126. Nondegeneracy and Discrete Models

By Masahiro NAKAMURA and Hiroshi TAKAI Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1972)

1. Let u_g be a faithful unitary representation of a group G on a Hilbert space H. Arveson [1] introduced the *nondegeneracy* of $\{u_g; g \in G\}$ if there is a vector $\xi \in H$ such that

(1) $(u_{g_i}\xi | u_{g_j}\xi) = 0 \quad (i \neq j)$

for any finite subset $\{g_1, g_2, \dots, g_n\}$ of G. Arveson's original definition is given for abelian groups. However, it is clear that his definition is valid for noncommutative case. If A is a C^* -algebra generated by $\{u_g; g \in G\}$, Arveson proved, then the *spectrum* $\sigma(A)$ of all characters of A is homeomorphic to the compact character group X of G if G is a nondegenerated abelian group. Hence, A is isomorphic to the algebra C(X) of all continuous functions defined on X.

If G is a discrete group, then

$$u_a\xi(h) = \xi(g^{-1}h)$$

defines the regular representation u_g of G on $l^2(G)$. Clearly, $\{u_g ; g \in G\}$ is nondegenerate since $\xi = \delta_1$ satisfies (1) for any finite subset of G, where

(2)
$$\delta_g(h) = \begin{cases} 1 & \text{for } h = g \\ 0 & \text{for } h \neq g. \end{cases}$$

Hence Arveson's theorem implies that the C^* -algebra R(G) generated by the regular representation of an abelian discrete group G is isomorphic to C(X). Therefore, Arveson's theorem is rephrased into

Theorem 1. If a C*-algebra A is generated by a nondegenerate faithful unitary representation of an abelian group G, then A is isomorphic to the operator group algebra R(G) of G.

On the other hand, there is an another characterization of R(G) given by one of the authors, cf. [3]. A pair (G, f) of a group G and a positive definite function f on G is a *model* for a C*-algebra A if the following conditions are satisfied:

1°. There is a faithful unitary representation u_q of G,

 2° . { u_g ; $g \in G$ } generates A,

3°. f is a faithful state of A with $f(g) = f(u_g)$,

 4° . f(g)=1 if and only if g=1.

A model is *discrete* if f satisfies

(3)
$$f(g) = \begin{cases} 1 & \text{for } g=1 \\ 0 & \text{for } g\neq 1. \end{cases}$$

(In discrete models, f is trivial; hence G is called simply a discrete

model for A). Obviously, a discrete group G is a discrete model for R(G). Conversely, the following theorem is valid:

Theorem 2. If an abelian group G is a discrete model for a C^* algebra A, then A is isomorphic to the operator group algebra R(G).

In the present note, the equivalence of two characterizations will be discussed in § 2. By this equivalence, Arveson's main theorem in [1] will be given an alternative proof in § 3. Finally, in § 4, a proof of Theorem 2 will be sketched.

2. In this section, the commutativity of groups is not essential.

Theorem 3. If G is a discrete model for a C^* -algebra A, then $\{u_q; g \in G\}$ is nondegenerate in the representation of A induced by the state f in 3° .

In the Gelfand-Naimark-Segal representation of A induced by f, there is a unit vector φ such as $f(a) = (a\varphi|\varphi)$ for $a \in A$, so that (3) implies

$$(u_g\varphi|u_h\varphi) = (u_{h^{-1}g}\varphi|\varphi) = f(h^{-1}g) = 0$$

for $h \neq g$. Hence $\{u_a; g \in G\}$ is nondegenerate.

The following converse of Theorem 3 is essentially contained in Arveson [1]:

Theorem 4. If a group $\{u_a; g \in G\}$ of unitary operators is nondegenerate, then the C^* -algebra A generated by G has a discrete $model \ G.$

It is clearly sufficient to show that A has a state f satisfying (3). For any $g \neq 1$, let K_g be the set of all states of A satisfying (4)

$$f(u_g)=0.$$

Then K_q is a convex weakly* closed subset in the compact set of all states of A. For a finite subset $\{g_1, g_2, \dots, g_n\}$ of G, there is a unit vector φ which satisfies (1) by the nondegeneracy of G; hence

(5) $f(a) = (a\varphi | \varphi)$

is a state of A which satisfies (4) for $g = g_i$, so that

$$f \in K_{q_1} \cap K_{q_2} \cap \cdots \cap K_{q_n},$$

and $\{K_g : g \in G\}$ has the finite intersection property. Therefore, there is a state f with

$$f\in \bigcap_{g\neq 1}K_g,$$

and f satisfies (4) for all $g \neq 1$.

Theorems 3 and 4 allow us to state that the nondegeneracy and the notion of discrete models for C^* -algebras are essentially equivalent.

3. The following theorem is a variant of Theorem 2:

Theorem 5. If an abelian group G is a discrete model for a C^* algebra A, then the spectrum $\sigma(A)$ of A is homeomorphic to the character group X of G.

If G is nondegenerate abelian group of unitary operators on a

Hilbert space H, and if G generates a C^* -algebra A, then G is a discrete model for A by Theorem 4. Hence, by Theorem 5, the spectrum $\sigma(A)$ of A is homeomorphic to X. This proves the following theorem of Arveson [1]:

Theorem 6. If an abelian unitary group G is nondegenerate, then the spectrum of the C*-algebra generated by G is homeomorphic to the character group of G.

As pointed out by Arveson [1], Theorem 6 implies a theorem of A. Ionescu-Tulcea which states that the spectrum of an ergodic automorphism of a nonatomic probability space covers the whole circle, cf. also [2].

4. In this section, a proof of Theorem 2 is given which is analogous to that of [3; III].

If G is an abelian group which is a discrete model for a C^* -algebra A. Via the Gelfand-Naimark-Segal representation of A induced by the state f in 3°, A is assumed to act on a Hilbert space H with a separating and generating unit vector φ with (5). Therefore $\{u_g\varphi; g \in G\}$ forms a complete orthonormal set in H. Let

$$w(u_{q}\varphi) = \delta_{q}.$$

Then w maps a complete orthonormal set of H onto a complete orthonormal set $\{\delta_g; g \in G\}$ of $l^2(G)$. Hence w is a unitary transformation which maps H onto $l^2(G)$. Put

$$a^{\phi} = waw^*$$

for $a \in A$. Then ϕ is a spatial isomorphism of A which maps u_q into v_q :

$$u_a^{\phi} = v_a$$

for every $g \in G$, where v_g is the regular representation of G on $l^2(G)$, since

$$u_{g}^{\phi}\delta_{h} = wu_{g}w^{*}\delta_{h} = wu_{g}u_{h}\varphi = wu_{gh}\varphi = \delta_{gh} = v_{g}\delta_{h}.$$

Since the regular representation v_g generates R(G), the spatial isomorphism ϕ maps A onto R(G), which is required.

It is noteworthy that the commutativity of the group plays no role in the above proof.

References

- W. B. Arveson: A theorem of the action of abelian unitary groups. Pacif. J. Math., 16, 205-212 (1966).
- [2] C. Foiaș: Sur les mesures spectrales qui interviennent dans la théorie ergodique. J. Math. Mech., 13, 639-658 (1964).
- [3] H. Takai: On an algebraic model for von Neumann algebra. I-III. Proc. Japan Acad., 46, 941–943 and 1091–1095 (1970). Memoirs Osaka Kyoiku Univ., 20, 121–123 (1971).

568