122. Remarks on the Asymptotic Behavior of the Solutions of Certain Non-Autonomous Differential Equations

By Tadayuki Hara
Osaka University

(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1972)

1. Introduction. In this paper we consider the asymptotic behavior of the solutions of the non-autonomous, nonlinear differential equation;

$$
\begin{equation*}
\dot{x}=A(t) x+f(t, x) \tag{1.1}
\end{equation*}
$$

where x, f are n-dimensional vectors, $A(t)$ is a bounded continuously differentiable $n \times n$ matrix for $t \geqq 0$, and $f(t, x)$ is a continuous in (t, x) for $t \geqq 0,\|x\|<\infty$, here $\|\cdot\|$ denotes an Euclidean norm. And consider (1.2) $\quad \ddot{x}+a(t) \ddot{x}+b(t) g(x, \dot{x}) \dot{x}+c(t) h(x)=p(t, x, \dot{x}, \ddot{x})$
where $a(t), b(t), c(t)$ are positive, continuously differentiable and g, h, p are continuous real-valued functions depending only on the arguments shown, the dots indicate the differentiation with respect to t. In this note, certain conditions are obtained under which all solutions of (1.1) tend to zero as $t \rightarrow \infty$.

In [6], the author studied the asymptotic behavior of the solution of the equation

$$
\begin{equation*}
\ddot{x}+a(t) f(x, \dot{x}) \ddot{x}+b(t) g(x, \dot{x}) \dot{x}+c(t) h(x)=e(t) \tag{1.3}
\end{equation*}
$$

under the assumptions that $\left|a^{\prime}(t),\left|b^{\prime}(t)\right|,\left|c^{\prime}(t)\right|\right.$ and $e(t)$ are integrable and suitable conditions on f, g, h. Here we assume the condition that

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\{\left|a^{\prime}(s)\right|+\left|b^{\prime}(s)\right|+\left|c^{\prime}(s)\right|\right\} d s
$$

has an infinitesimal upper bound,
to prove the every solution of (1.2) tends to zero as $t \rightarrow \infty$. Conditions on $p(t, x, y, z)$ are also relaxed. Theorem 2 generalizes the Ezeilo's result [5] in which he considered the equation

$$
\begin{equation*}
\ddot{x}+a_{1} \ddot{x}+a_{2} \dot{x}+f_{3}(x)=p_{1}(t, x, \dot{x}, \ddot{x}), \tag{1.4}
\end{equation*}
$$

where a_{1}, a_{2} are positive constants.
The main tool used in this work is Lemma 1 which is a specialization of the result obtained by F. Brauer [1]. Using this Lemma and Liapunov functions, we shall obtain Theorem 1 and Theorem 2. Lemma 1 is especially convenient to study the non-autonomous differential equations.

The author wishes to express his hearty thanks to Dr. M. Yamamoto of Osaka University for his invaluable advices and encouragements.
2. Main lemma. Consider a system of differential equations

$$
\begin{equation*}
\dot{x}=F(t, x), \tag{2.1}
\end{equation*}
$$

where x and F are n-dimensional vectors.
Lemma 1. Suppose that $F(t, x)$ of (2.1) is continuous in $I \times R^{n}$ $(I=[0, \infty)$) and that there exists a Liapunov function $V(t, x)$ defined in $I \times R^{n}$ satisfying the following conditions;
(i) $a(\|x\|) \leqq V(t, x) \leqq b(\|x\|)$, where $a(r) \in C I P$ (i.e. continuous and increasing positive definite functions), $a(r) \rightarrow \infty$ as $r \rightarrow \infty$ and $b(r) \in C I P$,
(ii) $\quad \dot{V}_{(2.1)}(t, x) \leqq-c V(t, x)+\lambda_{1}(t) V(t, x)+\lambda_{2}(t) \phi(V(t, x))$, where $c>0$ is a constant and $\lambda_{i}(t) \geqq 0(i=1,2)$ are continuous functions satisfying $\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \lambda_{1}(s) d s<c, \int_{t}^{t+1} \lambda_{2}(s) d s \rightarrow 0$ as $t \rightarrow \infty$,
and $\phi(u)$ is a continuous, non-negative function for $u \geqq 0$ satisfying $\phi(u)=0(u)$ as $u \rightarrow \infty$.
Then, all solutions $x(t)$ of (2.1) are uniform-bounded and satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

The detailed proof of Lemma 1 is to appear in some journal.
3. Theorems. Let $A(t)$ satisfy the condition (i) of the following Theorem 1, and $P(t)$ be a solution of the matrix equation

$$
\begin{equation*}
A^{T}(t) P(t)+P(t) A(t)=-I \tag{3.1}
\end{equation*}
$$

Notice that $P(t)$ is bounded for bounded $A(t)$. The following propositions are due to J. R. Dickerson [2].

Proposition A. $x^{T} P(t) x \geqq C\|x\|^{2}$, where C is a positive constant.
Proposition B. $\left|x^{T} \dot{P}(t) x\right| \leqq 2\|\dot{A}(t)\| \cdot\|P(t)\| x^{T} P(t) x$, where $\dot{P}(t)$ and $\dot{A}(t)$ denote the time derivative of matrices $P(t)$ and $A(t)$ respectively.

Theorem 1. Suppose that the following conditions are satisfied;
(i) the eigenvalues of $A(t)$ have negative real parts strictly bounded away from zero for all $t \geqq 0$,
(ii) $\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\|\dot{A}(s)\| d s<\frac{1}{2 P_{1}^{2}}$
where $P_{1}=\sup _{t \geq 0}\|P(t)\|$,
(iii) $\|f(t, x)\| \leqq \gamma_{1}(t)+\gamma_{2}(t)\|x\|^{\rho}$
where $\gamma_{1}(t), \gamma_{2}(t)$ are non-negative, continuous for $t \geqq 0$ and ρ is a constant such that $0 \leqq \rho \leqq 1$,
(iv) $\int_{t}^{t+1} \gamma_{i}(s) d s \rightarrow 0$ as $t \rightarrow \infty(i=1,2)$.
Then, all solutions $x(t)$ of (1.1) are uniform-bounded and satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Next, we consider the equation (1.2) and assume that $g(x, y)$ and $g_{x}(x, y)$ are continuous, real-valued for all (x, y) and $h(x)$ is continuously differentiable for all x.

Theorem 2. Suppose that $a(t), b(t)$ and $c(t)$ are continuously differentiable functions, and the following conditions are satisfied;
(i) $A \geqq a(t) \geqq a_{0}>0, B \geqq b(t) \geqq b_{0}>0, C \geqq c(t) \geqq c_{0}>0$,

$$
\text { for } t \in I=[0, \infty)
$$

(ii) $h(0)=0, \frac{h(x)}{x} \geqq \delta>0 \quad(x \neq 0)$,
(iii) $0<g_{0} \leqq g(x, y) \leqq g_{0}$
(iv) $\quad \frac{a_{0} b_{0} g_{0}}{C}>h_{1} \geqq h^{\prime}(x)$,
(v) $\quad \limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\{\left|a^{\prime}(s)\right|+\left|b^{\prime}(s)\right|+\left|c^{\prime}(s)\right|\right\} d s$
has an infinitesimal upper bound,
(vi) $|p(t, x, y, z)| \leqq p_{1}(t)+p_{2}(t)\left(x^{2}+y^{2}+z^{2}\right)^{\rho / 2}+\Delta_{1}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ where ρ, Δ_{1} are constants such that $0 \leqq \rho \leqq 1, \Delta_{1} \geqq 0$ and $p_{1}(t), p_{2}(t)$ are non-negative, continuous functions,
(vii) $\int_{t}^{t+1} p_{i}(s) d s \rightarrow 0$ as $t \rightarrow \infty(i=1,2)$.

If Δ_{1} is sufficiently small, then every solution $x(t)$ of (1.2) is uniform-bounded and satisfies $x(t) \rightarrow 0, \dot{x}(t) \rightarrow 0, \dot{x}(t) \rightarrow 0$ as $t \rightarrow \infty$.
4. Proof of Theorems. For the proof of Theorem 1, we consider the Liapunov function
(4.1)

$$
U(t, x)=x^{T} P(t) x .
$$

By virture of Proposition A and the boundedness of $P(t)$, we have

$$
C\|x\|^{2} \leqq V(t, x) \leqq P_{1}\|x\|^{2}
$$

A simple calculation shows that

$$
\begin{aligned}
\dot{V}_{(1.1)}(t, x) \leqq & -\frac{1}{P_{1}} V(t, x)+2 P_{1}\|\dot{A}(t)\| V(t, x) \\
& +2\left\{\gamma_{1}(t)+\gamma_{2}(t)\right\}\left\{\left(\frac{V(t, x)}{C}\right)^{1 / 2}+\left(\frac{V(t, x)}{C}\right)^{(1+\rho) / 2}\right\} .
\end{aligned}
$$

Hence, the assumptions of Lemma 1 hold and the proof of Theorem 1 is completed.

For the proof of Theorem 2, the following Liapunov function is constructed;
(4.2)

$$
V(t, x, y, z)=V_{0}(t, x, y, z)+V_{1}(t, x, y, z)
$$

where V_{0} and V_{1} are defined by

$$
\begin{align*}
2 \mu_{1} V_{0}= & 2 \mu_{1} c(t) \int_{0}^{x} h(\xi) d \xi+2 c(t) h(x) y+2 b(t) \int_{0}^{y} g(x, \eta) \eta d \eta \tag{4.3}\\
& +\mu_{1} a(t) y^{2}+2 \mu_{1} y z+z^{2} \\
2 V_{1}= & \mu_{2} g_{0} b(t) x^{2}+2 a(t) c(t) \int_{0}^{x} h(\xi) d \xi+\left[\alpha^{2}(t)-\mu_{2}\right] y^{2} \\
& +2 b(t) \int_{0}^{y} g(x, \eta) \eta d \eta+z^{2}+2 \mu_{2} a(t) x y \tag{4.4}\\
& +2 \mu_{2} x z+2 a(t) y z+2 c(t) h(x) y
\end{align*}
$$

and

$$
\frac{C h_{1}}{b_{0} g_{0}}<\mu_{1}<a_{0}, 0<\mu_{2}<\frac{a_{0} b_{0} g_{0}-C h_{1}}{A} .
$$

A good calculation shows that the above Liapunov function satisfies the hypotheses of Lemma 1.

The detailed proof of Theorem 2 is to appear in some journal with the proof of Lemma 1.

References

[1] F. Brauer: Global behavior of solutions of ordinary differential equations. J. Math. Anal. Appl., 2, 145-158 (1961).
[2] J. R. Dickerson: Stability of linear systems with parametric excitation. Trans. ASME, Series E, 37, 228-230 (1970).
[3] J. O. C. Ezeilo: Further results for the solution of a third-order differential equation. Proc. Camb. Phil. Soc., 59, 111-116 (1963).
[4] -: Stability results for the solutions of some thrid and fourth order differential equations. Ann. Mat. Pura. Appl., 66, 233-249 (1964).
[5] T. Hara: On the stability of solutions of certain third order differential equations. Proc. Japan Acad., 47, 900-905 (1971).
[6] -: On the asymptotic behavior of solutions of certain third order ordinary differential equations. Proc. Japan Acad., 47, 906-911 (1971).
[7] M. Harrow: Further results for the solution of certain third and fourth order differential equations. Proc. Camb. Phil. Soc., 63, 147-153 (1967).
[8] N. Onuchic: Asymptotic behavior of a perturbed linear differential equation with time lag on a product space. Ann Mat. Pura. Appl., 86, 115-123 (1970).
[9] R. Reissig, G. Sansone, und R. Conti: Nichtlineare Differentialgleichungen Höherer Ordnung. Roma (1969).
[10] A. Strauss and J. Yorke: Perturbing uniform asymptotically stable nonlinear systems. J. Diff. Eqs., 6, 452-483 (1969).
[11] K. E. Swick: On the boundedness and the stability of solutions of some non-autonomous differential equations of the third order. J. London Math. Soc., 44, 347-359 (1969).
[12] -: Asymptotic behavior of the solutions of certain third order differential equations. SIAM. J. Appl. Math., 19, 96-102 (1970).
[13] M. Yamamoto: On the stability of solutions of some non-autonomous differential equations of the third order. Proc. Japan Acad., 47, 912-917 (1971).
[14] -: Remarks on the asymptotic behavior of the solutions of certain third order non-autonomous differential equations. Proc. Japan Acad., 47, 916-921 (1971).
[15] T. Yoshizawa: Stability Theory by Liapunov's Second Method. Tokyo, Japan (1966).

