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(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1972)

1. Introduction. In this paper we consider the asymptotic
behavior of the solutions of the non-autonomous, nonlinear differential
equation;
(1.1) 2=A(t)x+f(t,x)
where x, f are n-dimensional vectors, A(t) is a bounded continuously
differentiable nn matrix for t>=0, and f(t, x) is a continuous in (t, x)
for t>=0, xll c, here [l" denotes an Euclidean norm. And consider
(1.2) /a(t) / b(t)g(x, 2)2 / c(t)h(x) --p(t, x, c, )
where a(t), b(t), c(t) are positive, continuously differentiable and g, h, p
are continuous real-valued unctions depending only on the arguments
shown, the dots indicate the differentiation with respect to t. In this
note, certain conditions are obtained under which all solutions o (1.1)
tend to zero as t-c.

In [6], the author studied the asymptotic behavior o the solution
of the equation
(1.3) "/a(t)f(x, 2)2 +b(t)g(x, 2)2+c(t)h(x)-e(t)
under the assumptions that a’(t), Ib’(t)I, Ic’(t) and e(t) are integrable
and suitable conditions on f, g, h. Here we assume the condition that

limsup -0{ a’(s) / b’(s) + c’(s)

has an infinitesimal upper bound,
to prove the every solution o (1.2) tends to zero as t-c. Conditions
on p($, x, y, z) are also relaxed. Theorem 2 generalizes the Ezeilo’s
result [5] in which he considered the equation
(1.4) 5 -t-al /a22 --f3(x) --p(t, x, 2, ),
where a, a. are positive constants.

The main tool used in this work is Lemma 1 which is a specializa-
tion o the result obtained by F. Brauer [1]. Using this Lemma and
Liapunov unctions, we shall obtain Theorem 1 and Theorem 2.
Lemma 1 is especially convenient to study the non-autonomous differ-
ential equations.
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2. Main lemma. Consider a system of differential equations
(2.1) c-F(t, x),
where x and F are n-dimensional vectors.

Lemma 1. Suppose that F(t,x) of (2.1) is continuous in I xR
(I=[0, c)) and that there exists a Liapunov function V(t, x) defined in
I R satisfying the following conditions
(i) a([Ixl)<=V(t,x)<=b(llx[I), where a(r)eCIP (i.e. continuous and

increasing positive definite functions), a(r)- as r-c and
b(r) e CIP,

( ii ) z(.)(t,x)<=-cV(t,x)+2(t)V(t,x)+2(t)(V(t,x)), where c>O is
a constant and 2(t) >_ O(i- 1,2) are continuous functions satisfying

o2(s)dslim sup < c, 2(s)dsO as t-c,

and (u) is a continuous, non-negative function for u>=O satisfy-
ing (u) O(u) as u-c

Then, all solutions x(t) of (2.1) are uniform-bounded and satisfy
x(t)-O as t-c.

The detailed proo o Lemma 1 is to appear in some journal.

:. Theorems. Let A(t) satisfy the condition (i) of the following
Theorem 1, and P(t) be a solution of the matrix equation
(3.1) Ar(t)P(t) +P(t)A(t) I.
Notice that P(t) is bounded or bounded A(t). The ollowing proposi-
tions are due to J. R. Dickerson [2].

Proposition A. xrP(t)x>=Cllxll, where C is a positive constant.
Proposition B. IxTp(t)xI<=21IA(t)II.IIP(t)IIxTp(t)x, where P(t) and

A(t) denote the time derivative of matrices P(t) and A(t) respectively.

Theorem 1. Suppose that the following conditions are satisfied;
( ) the eigenvalues of A(t) have negative real parts strictly bounded

away from zero for all t>=O,

( ii ) lim_sup (s)II ds < 2P--
where P-sup P(t)11,

t>_0

( iii ) f(t, x)II-<_ rl(t) + r2(t)11 x
where r(t), r.(t) are non-negative, continuous for t>= 0 and p is a

constant such that 0_<_pgl,

( iv ) r()d--*O a too (i- 1, .).

Then, all solutions x(t) of (1.1) are uniform-bounded and satisfy
x(t)-O as

Next, we consider the equation (1.2) and assume that g(x, y) and
g(x, y) are continuous, real-valued for all (x, y) and h(x) is continuously
differentiable or all x.



No. 7] Non-Autonomous Differential Equations 551

Theorem 2. Suppose that a(t),b(t) and c(t) are continuously

differentiable functions, and the following conditions are satisfied;
( A>=a(t)>=aoO,B>=b(t)>=boO,C>=c(t)>=co>O,

for t e I=[0, co),

( ii ) h(0)--0, h(x).>=3O (x:/:O),
x

(iii) Ogo<g(x, Y)<go+ 4c0 yg(x, y)<=O for all (x, y) e R,
Bbogo

( iv ) aobogo h >= h’(x),C

(v) limsup -i{ a’(s)]+lb’(s)]+.c’(s)}ds

has an infinitesimal upper bound,
(vi) Ip(t,x,y,z)l<=p(t)+p(t)(x+y+z)"/+z(x+y+z)n

where p, zl are constants such that 0__<p<__l,z/>__0 and p(t), p(t)
are non-negative, continuous functions,

+1(vii) p(s)ds-.O as t-.co (i- 1, 2).

If zl is sufficiently small, then every solution x(t) of (1.2) is

uniform-bounded and satisfies x(t)--,O, 2(t)-.O, 2(t)-,O as too.
4. Proof of Theorems. For the proo o Theorem 1, we consider

the Liapunov unction
(4.1) U(t, x)-xrP(t)x.
By virture of Proposition A and the boundedness o P(t), we have

C x I1<__ V(t, x) <=P x .
A simple calculation shows that

(.)(t, x) <__ 1----V(t, x) +2P A(t)II v(t, x)
P

+2{7(t)+ ’2(t)} {( V(t, x) .) /2 4-( V(t,C x) ) (+)/2}
Hence, the assumptions of Lemma 1 hold and the proof of Theorem 1
is completed.

For the proof of Theorem 2, the following Liapunov function is
constructed
(4.2) V(t, x, y, z)-- Vo(t, x, y, z)+ V(t, x, y, z)
where V0 and V are defined by

2/V0-2/c(t).[h()d4- 2c(t)h(x)y 4- 2b(t).fg(x, )d(4. 3)
+[a(t)y +2lzyz + z2,

2 z gob(t)x + 2a(t)c(t)J h( )d + [a(t) /]y

(4.4) + 2b(t)]ig(x, )d+z+2/.a(t)xy

+2/xz+2a(t)yz +2c(t)h(x)y
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and
Chl

ttl ao, 0 l2
aobogo-- Chl

bogo A
A good calculation shows that the above Liapunov function satisfies
the hypotheses o Lemma 1.

The detailed proo o Theorem 2 is to appear in some journal with
the proof o Lemma 1.
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