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1. Introduction. Let R be a connected domain of an m-di-
mensional, orientable C Riemann space with the metric ds= g
(z)dx dx We consider he forward diffusion equation in R

(1.1) Ef f(t, X)_Af(, x) O, s

where

2) A,f(t, x) g(x)-/ O’-- (g(x)W’a*(t, x) f (t, x)

g(x)-l/x,(g(x)l/ b(t, x)f(t, x) + c(t, x)f(t, x)

g(x) det (g(x) )
’The associate backward diffusion equation is defined by

(1. a) E;h dh(s, y) Ah(s, y) O, s< t,
ds

where A is ,he formal adjoint of A,v"
, ,dh(s,y)(1.4) Ah(s,y) a(s,y) dh(s’y)dydy +o (s,y) dy. .-+c(s,y)h(s,y).

The operator A A is assumed to be elliptic in x in the sense
that
(1.5) a’(t,x)$,$0 for ($,)0.

Since he value of Af(t,x) should be independent of the local
coordinates (x,..., x), we must have, by he coordinates change
x 5, he transformation rule

6)
dx dxn

b (t, ) d x) a(t, x).
dx

,
dxedxn

For the sake of simplicity, we assume that the coefficients a(t,x),
b(t, x), c(t, x) and g(x) are C functions of (t, x).

The purpose of the present note is to give a sketch of a method)

1) Another method was proposed by Tosio Kato- (Integration of the equation of
evolution in a Banach space, J. Math. Soc. Japan, ;, 208-234 (1953)). His method is
much general and elegant. However, it may not be easy to apply his method to the
concrete equation such as (1.1), since he assumes that the domain L)(At)of the closed
extention At of At is independent of t.
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of the integration in the function space L--L(R) of (1.1) with
the initial condition
(1.7) f(s, x) f(x)
Thus we firstly consider an approximate equation

(1.1)’ E)f df((t, X)_A)r)t, x) O, t ._=_:> s (n 1, 2, ),

f<’)(s, x) f (x)
where A") -=,a(=" is a bounded operator in L which converges, in
the sense, to be explained below, to A, A, as n--> o. Secondly
it will be shown that there exists a subsequence {fe=’)(t, x)} of the
solutions {f()(t,x)} of (1.1)’ which converges, in the sense of the
"distribution " ) to a solution T, of

(1.1)" d(T,, qg) (Tt A,* c,o) O, t >s,
dt

(T, cp) (f, cp) ff(x)p(x)dx.

Here (T,, q) is the value of the distribution T at q, (p(x) denoting
a C function whose carrier is compact and is contained in an open
domain of R. The totality of such functions o(x) will be denoted
by D(R). Finally we will show, by a parametrix consideration,
that this T is defined by a "genuine " solution of (1.1). (See the
Theorem below in 3.)

2. The Construction of the Distribution T. Let D be a set
of C functions f(x) with compact carriers such that D is L-dense
in L. We regard A--At as an additive operator defined on D L
to L. Let A be the smallest closed extension of the operator A,
and we will make the following"

Hypothesis. Let, for all sufficiently large integer n (inde-
pendently of t), the resolvents
(2.1) li (1-n-A)-exist as bounded operators on L to L such that
(2.2) _rip’f(x)is non-negative and i":’f(x)dx f(x)dx

if f(x) e L is non-negative,
(2.3) li")f is strongly continuous in t.

The Hypothesis implies that

2) The function space of the Borel measurable functions f(x) which are inte-
grable with respect to the measure dx=g(x)l/ dxl...dxm. The norm of f is hence
given by f’!] =fR f(x)ldx" It is to be noted that our method of integration of
(1.1) may, with slight modifications, be extended to the case of the function space.
L(R), 1 p .

3) L. Schwartz" Thorie des distributions, Iet II, Paris (1950 et 1951).
4) Cf. K. Yosida" On the integration of diffusion equations, in Riemannian spaces,

Proc. Amer. Math. Soc., 3, 864-873 (1952).
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(2.4)
and

(2. 5)
satisfies

(2.6) strong lim Ai")f Af for f in the domain D(A) of A.
We first prove the
Lemma 1. For any fe L, there exists a solution f?)= f’)(t,

s, x) e L of
(2.7) D e) strong lim -(rc) _f)tJts Jt+6,

o

sronff lim "> f,

saisfyinff

(2.8) f:"(t, , ) is non-neffaive and

if f(z) is non-neffaive.
Proof. Puinff

we have he bounded opera,or

Then he solution f2 of (2.7) may be defined by

(2.9)

where

(2. 10) Q’)(t, s) (- 1)’+ w’,,)(t, s)

W?)(t, s) fl: W(")(t, )"">,,_-,(-, s)d W"> W)

We next prove
(2.11) ll f)ll II f [[.
For this purpose, we start, by (2. 5) and (2.7),
(2. 2) +: f?+ a(n(2")- fi:>) + o(a) a > 0dt+6s

Then, by (2.4),
+,. + dts dts

and hence
d+ I! <"z II 0
d

which Droves (2. 12). We nex assume ha f(t, s, x) o be non-
neffaive. Then, by (2. 2) and (2.

+ o()d f’)(t, , )dx+ o(),

which implies
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+
(2.13) d--t "f f(’)(t, s, x)dx O

Hence, if f(x) is non-negative, we have, by (2.11) and (2. 13),

Therefore fe’)(t,s,x) must be non-negative (almost everywhere)
wih S(x).

Lemma 2. There exists a subsequence ,,, of {fY} such
,ha,
(2.14) lim (fg’), ) (Tt ), e D(R)

where (Tt, 9) satisfies (1.1)’. Actually, Tt is a distribution defined
by a measure
(2. 15) (T,, e)

ProoL Integrating (2.7), we have , ,, A@d,
and hence, by (2.4) and (2.11),
(2.16) ""].--,,(" @1 llfll’l
By virtue of (2.11) and (2.16), we may choose a subsequenee
of [n} such Chat (2.14) holds for a distribution Tt which satisfies
(2. 17) (T, ) is continuous in t.
We see that (2.15) also holds good by (2.8). We have also
(2. 18) lm (:’)r:’) A) (T A) boundedly in

since, by (2.11),
()f), )-()f), (z-n- A)) n-(’)fi% A)

(f., ),, )) ((I-n-A)(I-n-A)-
n- (lYf, A) n- II fll .max AL (x)

Thus Tt satisfies (1.1)".
3. The Theorem. Let xo be any point of R and let U(Xo) be

a sufficiently small neighbourhood of xo. Let V(Xo) be any neigh-
bourhood of xo such hat its closure is containe in U(xo). We may
constructa a parametrix H(x, y, t, s) for the equation (1.3) such that
(3.1) H(x, y, t, s) is, for t >s, C in (x, y, t, s),
(3.2) E H(x, y, t, s) K(x, y, t, s) is C in @, y, t, s) even when

(3.3) H(x, y, t, s) 0 if x or y is outside of U(x),
lim (y, x,(3.4) f(x) lim f(y)H(x, y, t, s)dy ,o,,of(y) H t, s)gy

tO,S R

for any x e V(xo) and for any continuous function f(y).
5) Cf. K. Yosida: On the fundamental solution of the parabolic equation in a

Riemannian space, Osaka Math. g., 5, 65-74 (1953).
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We have thus, for any >0,
(f(t, s, x), H(, , t + , t) )- (f(s, s, x), (x, y, t + , s) )

(ff’)(r, s, x), H(x, y, t + , r) )a

rrc)cr_ x),H(x, t+ ))d,,j ., s, y,

+ ’(ff)(r, s, x),-E H(x, y, t + , r)

On the right hand side, the second term vanishes) in virtue of the
Green’s integral theorem and (3.3). And the third term tends, as
n n, to zero. This we see by (2.14) and (2.18).

Therefore we have, for any (y)e D(R),. d,(x)(H(x, , t + , t), () f/()(g(, , t+ , ), ()

+ fld,(x)((x, , t+ , ), e(u))id.

By letting e 0 and remembering (3.4), we obtain

The measure dp(x) is thus absolutely continuous with respect

’to the measure . dx, and the density f(t, s, x) satisfies, by (3. 5),

Hence f(t, s, x), which satisfies
(U. 7) (T, ) f(t, s, x)(x)dx

is equivalent to

This is surely continuously differentiable once in t and twice in x
for ts and or x e V(xo).

We have thus proved Che ollowing:

Theorem. t the Hypothesis be satisfied. en for any fe L,
Chere exists a solution ft, f(t, s, x) e L of (1.1) with Che initial
condition
(3.9) lira f (t, s, x) f (x) almost everywhere.

The uniqueness of this solution may be prove4 by the known
.argument. Moreover, f (t, s, x) is non-negative with f(x).

6) By a similar argument as in the paper by K. Yosida. Cf. 4), p. 870.


