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1. Introduction. The present note is a preliminary report of
the paper which will be publishecl elsewhere under the same title.

Veblen) constructed a descriptive geometry in terms of
"point " and " order" undefined, and on the other hand Preno-
witz formulated descriptive geometries as multigroups. Our aim
is to show, making use of the Prenowitz’s algebraic idea, that the
way found by Veblen leads up directly to the fertile land of geometries
of manifolds. The geometry of manifold which we are going to
construct may be considered as an abstraction of the geometry of
paths which was also inaugulated by Veblen with Eisenhart. But a
larger part of the studies included in the present paper is con-
cernecl to so-called fiat manifolds. We shall expect that sooner or
later our theory will extend to more general cases.

2. Concept o Path Structure. Suppose that there is a non-
empty set S whose elements are called points. We denote points
by small Lutin letters, and sets of points (subsets of S) will be
designated by capital Latin letters. We write AB if A B 0.

We now assume that there is an operation --, which associates
a certain set of points a-b called the difference of a and b with
each ordered pair of points a, b. The set union D[a-b]aA, bB}
for non-empty A, B is denoted A-B we define A-0=0-A=0 for
an arbitrary A. The set of all x for which x-ba is designated
by a+b, and it is called the sum of a and b. If A, B0, then
A+B is the set union [[a+blaA,bB}. We define further
A+ 0 0 +A 0 for an arbitrary A.

The set S thus furnished with the operation--will be denoted
(S; -). We assume that (S;-) satisfies the followings:

I. Idempotent Law a-a a.
II. Commutative Law a + b b + a.

III. Absorptive Law a+ (a-b) a-b.
IV. Reductive Law If a+ba+ c and b = c, then we have

either ba+c, b c or ca+b, b c.
V. If a-bO, then a+bO.

Then (S;-) is referred to as a path structure. From now on
our investigations will be carried out in the path structure (S; -).

A directed pair (a, b) is called subtractive if a-bO. A
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directed set pair (A, B) is called subtractive if every (x, y)]xA,
yB is subtractive. A set A is called subtractive if (A, A) is
subtractive. A subtractive set A is called pseudo-open if for any
p, q of A there is x such that xq-p and q+x A.

A directed point pair (a, b) is called additive if either a b or
ab, a+bO, x,y-a+b an4 xy give rise o ax-y or
ay-x. We can show that if (a, b) is additive, then (b, a) is also
additive, and the subtractivity of (a, b) implies the additivity of
(a, b). The additivities of set pairs and sets will be definecl as in
he case of he subtractivities.

Let (a, b)be additive. Then a+b is called an open segment.
We define a b=aO(a+b)Jb, and call it a closed segment. If aJb
is subtractive, then each of a+b and a@b is called extensible.
Next suppose that loa+ b, then p- (p+ b) alp is termed a ray
emanating from p.

We say that a set A supports a ray alp if A contains p and x
such that a/p x/p. Let A, B be any sets. If every ray which
emanates from /9 and at the same time supported by B is supported
by A, then A is said to support B rouud/9. If A supports B round
every point of A(B, then we say that A supports B. If A and
B support each other round p, then we write A B (mod p). If
A B (mod p) for every pA( B, then we denote this by A B,
and say that A and B have a perfect intersection. If A B and
A B, then A is said to be perfect in B.

A chain of segments (open or closed)is a finite sequence of seg-
ments such that the interiors of any two neighbouring segments have
a perfect intersection. A collection of segments is called connected
if any two segments of the collection are connected by a chain of
segments of the collection. The set union of all the segments of
a maximal connected collection of segments is termed a path
generated by any segment out of the collection. The extremity of
a path is the set of at most two points which bound the path
(the precise definition is now omitted).

In the above argument if only open segments are taken into
consideration, then we get a cyclic path which has the empty ex-
tremity. Any path contains one and only one cyclic path which is
the set difference of the path and its extremity.

3. Linear Structure. Suppose that (S;-) satisfies
Line Postulate: Let a(J b be subtractive, then (a+b)-x remains

the same so far as x ranges over a + b.
Then (S;-) is said to form a linear structure. And any path

in a linear structure is termed a line. We define
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a V b--- a U bU (a+ b) U (a-- (a + b)) U (b- (a + b)).
The set a V b has also its extremity composed of at most two points
bounding a V b (the precise definition is omitted). We can prove:
IS a line is generated by a segmen a+b, then a V b is identical with
the line, and the extremity of a q b is identical with the extremity

of the line. IS each of p, q on a line is not contained in the non-
empty extremity oS the line, then p U q is subtractive and the line is
identical with p V q.

We only notice that there are open lines and closed lines.
The description of various properties of lines are omitted.

4. Theory of Convexes. For an arbitrary A the set A +A is
termed the self-sum of A. We can define the successive self-sums
of A. If A and its successive self-sums up to the (n-l)th are
each additive, then we say that A is n-additive; if all the succes-
sive self-sums are additive, then co-additive. If A+ACA, then A
is called convex provided that A is additive.

Let a finite set A composed of n points (n :> 2) be (n-l) ad-
ditive, and let (x + y) + z x+ (y+ z) for any points x, y, z of the
(n-l) th self-sum of A, then A is said to form an associative point
system. And even if A is not finite, it is also said to form an as-
sociative point system if every finite subset of A forms an associa-
tive point system defined above. Further a single point a is said
to form an associative point system.

Let A a J (J a. form an associative point system. Then
we can prove that each of a+...+a, and a...)a is inde-
pendent of the order in which the letters a appear, hence we can
write a +... + a, A and a( (a (A. We can prove
A is the maximal oonvex set which ineludes A, and A is the
maximal pseudo-open set included in A. A is the convex
generated by A and A is the open convex (or the interior of
(A) generated by A. The set difference dA =A-A is the
boundary of .A. We can clarify the constitution of A in
detail. The method o do this is quite different from that of
Weyl) because we do not suppose that ]A is included in an
affine space. If A is independent, thenA is a simplex.

In case A is infinite we can define (A as the set union of
all finite AIACA, and call it also the convex generated by A.
If A is independent, the A is an infinite simplex. What is
remarkable for an infinite simplex is that i has no interior, that
is, the maximal pseudo-open set contained in the simplex.

5. Linear and Associative Structures. We treat here linear
structures which satisfy various types of associative laws. A
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polygon pp...pq is the set union of segments p(p,...,
p ( q. A set A any two points of which are connected by a polygon
included in A is called arcwise connected, and if each connecting
polygon is composed of only extensible segments, then A is called
subtractively arcwise connected.

D-structure. Let (S -) satisf
Associative Law (a + b) + c a -(b+ e)

then (S;-) is referred to as a D-structure. Any subtractively
arcwise connected set is called a componen of (S;-) if it is
maximal. Then we can prove: Every component o3 (S;-) is
descriptive geometry.

DS-structure. Let (S;-) be linear and satisfy
-associative Law (a b) c a (b c),

then (S; -) is referred to as a DS-structure. A component of (S; -)
is defined as in the case of the DS-structure. Then we have: If
a component of DS-structure is not composed of a single line, then
it is either a descriptive geometry or a spherical geometry.

P-structure. We define
ab (a/ b) J (a- (a + b)) J (b- (a/ b))

AB J [ab aA, bB}
Let (S; -) be linear and satisfy
-associative Law (arb)c ar(brc)

then (S;-) is referred to as a P-structure. A maximal arcwise
connected set of (S -) is termed a component of (S; -). Then we
can prove: Every component of (S; -) is a projective geometry.

We notice that in the P-structure it is not always the case
that every line is cyclic.

SP-structure. We say that (S -) is semi-symmetric if a-b = 0
implies b-(a+ b) O. Let (S; -) be linear, semi-symmetric and satisfy

V-associative Law (a V b) V c a V (b V c)
then (S; -) is referred to as a SP-structure. A component of SP-
structure is defined as in the case of the P-structure. Then we
have: Every component of (S; -) is a spherical geometry if it is
not a projective geometry.

DSE-structure. Let (S -) be linear and satisfy the followings
Restricted Associative Law: If the pairs (a, b), (b, c), (c, a)and

(a+ b, c) are all additive, then (a+ b) + c a+ (b + c)
Plane Postulate: Let a/b/c be a triangle (2-simplex), then

(a/b/c)-p remains the same so far as p ranges over a/b/c.
Condition: If the pairs (p, a) and (p, b) are non-additive, then

the pairs (p, a-b) and (p, b-a) are both non-additive ((A, B)is
called non-additive if there are no xA and yB such that (x, y)
is additive).
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Then (S; -) is referred to as a DSE-structure. A maximal
subtractively arcwise connected set is termed a component of (S; -).
Then we can prove Every component of (S -) is any one of geom-
etries, a descriptive or a spherical or a projective.

{i. Reion S,stem. We say that X is enclosed in Y if the
self-sum of X is included in Y. If the n th self-sum is included
in Y, then, X is said to be n-enclosed in Y. A sequence of pseudo-
open sets A, A. is said o form a chain if any two
neighbouring sets have a perfect intersection. And a polygon
[ap... p,_bJ (a segment may be considered as a polygon) is said
to be confined in this chain if a ( pA, ..., p._( b A..

A collection i of pseudo-open sets is referred to as a region
system if it subjects to the conditions"

R 1. If A e supports B e round a point, then A B.
R 2. Let A, B e and A B. Then any segment a(bA

is confined in a chain of sets of , each link of which is enclosed
in A(B.

And every set of is called a region of .
Any subtractive set X is called -open if every segment

a ( b X is confined in a chain in , each link of which is enclosed
and perfect in X. Region systems and 3 are called equivalent
if every region of / is -open and every region of is -open. A
region system is called a refinement of a region system if for
each region A of there is a set X of such that AX and any
region of is -open.

An -open set A is called -normal if any segment a b a, bA
is confined in a chain in i}t each of the initial and the terminal
links oi which has a perfect intersection with A. If every region
of is -normal, then i is called a normal region system. Then
we can prove: The collection of all the 9t-normal sets forms a
normal region system which is equivalent to .

7. Path Manifold. If (S; -) has a normal region system
such that every segment in (S;-) is confined in a chain of the
region of , then we say that (S; -) forms a path manifold (S; -, ).
If a chain of regions of (R) confines a segment a ( b and has the
initial link A and the terminal link B, then A is said to be
transitive to B along a ( b. If any region of which supports
any segment a b round a is transitive along a ( b, then (S; -, (R))
is called transitive. (S; -, ) is called connected if any two regions
of (R) is connected by a chain in .

If a chain in whose initial link is A confines a polygon
[p... qJ, then the polygon is called a route and denoted A[p... q].
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Let ..i be any refinement of . We can define "connectedness"
and "route" by using only regions of . Let A[p,..q] and
Ap... q be any two routes each of which is confined in a chain
in . And suppose that there exists a finite sequence of routes
A[p...q], A[p...q,..., Ap...q’ such that any two neigh-
bouring routes are confined in the same chain in whose initial
link has a perfect intersection with A. Then we say that Ap...q]
and Alp... q]’ are -homotopic to each other. Let 9 and 3 be
any two refinements of (R) such that any two routes which are -homotopic are also -homotopic and vice versa, then we say that
.i-homotopy and -homotopy are equivalent. If for any refinement
l of I, 9-homotopy is equivalent to -homotopy, then J-homotopy
is called universal, and we say that (S;-, ) has a universal
homotopy. If (S; -, (R)) is simply connected in the sense of a uni-
versal homotopy, then (S; -, (R)) is merely called simply connected.

If (S; -, ) is connected, we can consider cover,ing manifolds
of (S; -, (R)) which are similar to that covering manifolds familiar
to us in topology. We can prove: If (S; -, (R)) has a universal
homotopy, then it has a connected and simply connected covering

mani3old.
If for any point of (S;-, (R)) any two regions of (R) which in-

clude the point have a perfect intersection, then (S -, (R)) is called
non-branched. (S; -, (R)) forms a neighbourhood space if (R) is as-
signed for neighbourhood system, neighbourhoods of p being denoted
U, W, (S -, (R)) is called operationally clo.sed if the follow-
ing condition is satisfied" If a, b, c are distinct and have neigh-
bourhoods U, U, U, such that any VU, VU and VU, have
respectively points p, q, r satisfying pq-r, then ab-c.

If (S; -, (R)) is connected and non-branched, then (S; -, (R)) is
called a path space. We can prove: If the space (S;-, (R))is
operationally closed, then it is a Hausdorff space.

By means of introducing various topological conditions in
(S -, (R)), we can specialize (S --, (R)) in various manners. We set
forth here a theorem If (S; -, (R)) is separable and locally compact,
then it has a universal homotopy.

Finally we notice, using a theorem of G. H. C. Whitehead,
that the space of geometry of paths is a path space with a
convex region system.

8. Stratified Structure. We consider here a path structure
which contains a certain collection of path submanifolds, and a
theory of dimension and also a theory of separation are discussed.
Finally the DSE-structure is studied as a sort of stratified
structures.
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9. Locally Associative Manifold. (S -, ) is always considered
o be connected and transitive. If (R) has a refinement (R)" such
hat for any A e and a, b, cA we have (a+ b) + c a+ (b + c),
then (S -, (R)) is called a locally associagive anifold. We can make
this manifold a sort of stratified structures which has the same
dimension at every point of it. We indicate by (R)c a refinement
of (R)" such that each region of (R) is 2-enclosed in some one of
regions of

If (S;-, (R))is of dimension 3, then we can embed each
A e (R)( in a spherical geometry. Using this embedding, we can
prove" Let (S;-, (R)) of dimension 3 be simply connected in
the sense of (R)(-homotopy, and let any two points be combined by
at least one path. If there are no distinct paths which intersect at
three distinct points and all the paths are closed, then (S;-,
forms a spherical geometry.

(S; -, (R)) is called continuous if every segment in (S; -, (R))
forms a Dedekind’s continuum. In the continuous case we can
prove" Let (S; -, (R)) of dimension 3 be continuous. If there is
A (R) such that every path which goes through a and is supported by
A round a is closed, then (S; -, (R)) forms a spherical geometry or a
projective geometry.

And we can prove" Let (S; -, (R)) of dimension 3 be contin-
uous. If any points are combined by a single open pth, then
(S; -, (R)) forms a descr@tive geometry.

Line Ppstulate in (S; -, ) asserts" If a +b is any segment in-
eluded in any region of (R), then (a+b)-p is left invariant so far as

ranges over a+b.
And Plane Postulate in (S; -, (R)) asserts" Let a+b+c be any

triangle included in any region of , then (a +b+ c)-p is left invariant
so far as p ranges over a+ b+ c.

Then we can prove" Let (S; -, (R)) of dimension 3 satisfy
the plane postulate, then it satisfies the line postulate. And (S; -, (R))
forms a spherical geometry if there are two distinct lines which in-
tersect at two distinct points, and (S;-, )forms a descriptive
geometry if there is no closed line. Further (S; -, ) forms a pro-
jective geometry if there are no two distinct lines which intersect at
two distinct points and all the lines are closed.

In the continuous case we can prove" If (S; -, (R))of dimen-
sion 2 is continuous and operationally closed, then (S -, (R)) admits
the plane 9ostulate if it admits the line postulate.

Further we have" Let (S -, (R)) of dimension 2 be continuous
and compact, then (S; -, (R)) forms either a spherical geometry or a
projective geometry.
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