32. Probabilities on Inheritance in Consanguineous Families. IV

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology (Comm. by T. Furuhata, m.J.a., Feb. 12, 1954)

IV. Ancestors-descendant combinations through an intermediate marriage

1. Ancestor-parent-child combination immediate after a marriage

Suppose that two individuals $A_{\alpha \beta}$ and $A_{\gamma \delta}$ are accompanied by their μ th and ν th descendants $A_{a b}$ and $A_{c a}$, respectively, and that these descendants are married and originate themselves an nth descendant $A_{\xi \eta}$. Let the probability of a triple consisting of ($A_{\alpha \beta}$, $\left.A_{r \delta} ; A_{\xi \eta}\right)$ be then designated by

$$
\bar{A}_{\alpha \beta} \bar{A}_{\gamma \delta} \varepsilon_{\mu \nu ; n}(\alpha \beta, \gamma \delta ; \xi \eta)
$$

The probability of parents-descendant combination, ε_{n}, treated in I , $\S 2$, may be regarded to correspond to the lowest case $\mu=\nu=0$; in particular, $\varepsilon_{1} \equiv \varepsilon_{00 ; 1}$ represents nothing but ε. Here we distinguish four systems in case of higher generation-numbers μ, ν according to $\mu>0=\nu, n=1$ or $\mu=0<\nu, n=1 ; \mu>0=\nu, n>1$ or $\mu=0<\nu, n>1$; $\mu>0, \nu>0, n=1$; and $\mu>0, \nu>0, n>1$.

The first system will now be treated. By virtue of an evident quasi-symmetry property with respect to $\alpha \beta, \gamma \delta$ and μ, ν, it suffices to consider the former. Its defining equation

$$
\varepsilon_{\mu 0 ; 1}(\alpha \beta, \gamma \delta ; \xi \eta)=\sum \kappa_{\mu}(\alpha \beta ; a b) \varepsilon\left(a \bar{b}, \gamma \delta ; \xi_{\eta}\right)
$$

can be brought into the form

$$
\varepsilon_{\mu 0 ; 1}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right)=\kappa\left(\gamma \delta ; \xi_{\eta}\right)+2^{-\mu} C_{0}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right)
$$

where C_{0} is defined by

$$
C_{0}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right)=2 \sum Q(\alpha \beta ; a b) \varepsilon\left(a b, \gamma \delta ; \xi_{\eta}\right)
$$

The values of C_{0} are set out as follows:

$$
\begin{array}{ll}
C_{0}(i i, i i ; i i)=1-i, & C_{0}(i i, i i ; i g)=-g ; \\
C_{0}(i i, i k ; i i)=\frac{1}{2}(1-i), & C_{0}(i i, i k ; i k)=\frac{1}{2}(1-i-k), \\
C_{0}(i i, i k ; k k)=-\frac{1}{2} k, & C_{0}(i i, i k ; i g)=-\frac{1}{2} g \\
C_{0}(i i, i k ; k g)=-\frac{1}{2} g ; & \\
C_{0}(i i, k k ; i k)=1-i, & C_{0}(i i, k k ; k k)=-k, \\
C_{0}(i i, k k ; k g)=-g ; & \\
C_{0}(i i, h k ; i k)=\frac{1}{2}(1-i), & C_{0}(i i, h k ; h k)=-\frac{1}{2}(h+k) ; \\
C_{0}(i j, i i ; i i)=\frac{1}{2}(1-2 i), & C_{0}(i j, i i ; i j)=\frac{1}{2}(1-2 j) \\
\hline
\end{array}
$$

*) I-III, Proc. Japan Acad. 30 (1954), 42-52.

$$
\begin{array}{ll}
C_{0}(i j, i i ; i g)=-\frac{1}{2} g ; & \\
C_{0}(i j, i j ; i i)=\frac{1}{2}(1-2 i), & C_{0}(i j, i j ; i j)=\frac{1}{2}(1-i-j), \\
C_{0}(i j, i j ; i g)=-\frac{1}{2} g ; & \\
C_{0}(i j, i k ; i j)=\frac{1}{(}(1-2 j), & C_{0}(i j, i k ; i k)=\frac{1}{4}(1-2 i-2 k), \\
C_{0}(i j, i k ; j k)=\frac{1}{2}(1-2 j) ; & \\
C_{0}(i j, k k ; i k)=\frac{1}{2}(1-2 i) . &
\end{array}
$$

The values of $C_{0}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right)$ are independent of $\alpha \beta$, provided $A_{\alpha \beta}$ contains no gene in common with $A_{\text {ro }}$ as well as $A_{\xi \eta}$. It further satisfies the following relations:

$$
\sum C_{0}(\alpha \beta, \gamma \delta ; a b)=\sum \bar{A}_{a b} C_{0}(a b, \gamma \delta ; \xi \eta)=0, \sum \bar{A}_{a b} C_{0}(\alpha \beta, a b ; \xi \eta)=Q\left(\alpha \beta ; \xi_{\eta}\right)
$$

2. Ancestor-parent-descendant combination distant after a

marriage

We consider the second system with $\mu>0=\nu, n>1$. The reduced probability is then defined by an equation

$$
\varepsilon_{\mu 0 ; n}(\alpha \beta, \gamma \delta ; \xi \eta)=\sum \varepsilon_{\mu 0 ; 1}(\alpha \beta, \gamma \delta ; a b) \kappa_{n-1}(a b ; \xi \eta)
$$

which leads to an expression

$$
\varepsilon_{\mu 0 ; n}(\alpha \beta, \gamma \delta ; \xi \eta)=\kappa_{n}(\gamma \delta ; \xi \eta)+2^{-\mu-n+1} C\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right) .
$$

The values of a quantity defined by

$$
C(\alpha \beta, \gamma \delta ; \xi \eta)=2 \sum C_{0}(\alpha \beta, \gamma \delta ; a b) \kappa\left(a b ; \xi_{\eta}\right)
$$

are set out in the following lines:

$$
\begin{array}{ll}
C(i i, i i ; i i)=i(1-i), & C(i i, i i ; i g)=g(1-2 i), \\
C(i i, i i ; g g)=-g^{2}, & C(i i, i i ; f g)=-2 f g ; \\
C(i i, i k ; i i)=i(1-i), & C(i i, i k ; i k)=k(1-2 i), \\
C(i i, i k ; k k)=-k^{2}, & C(i i, i k ; i g)=g(1-2 i), \\
C(i i, i k ; k g)=-2 k g ; & C(i i, k k ; i k)=k(1-2 i), \\
C(i i, k k ; i i)=i(1-i), & C(i i, k k ; i g)=g(1-2 i), \\
C(i i, k k ; k k)=-k^{2}, & \\
C(i i, k k ; k g)=-2 k g ; & C(i i, h k ; h k)=-2 h k ; \\
C(i i, h k ; i k)=k(1-2 i), & C(i j, i i ; i j)=\frac{1}{2}(i+j-4 i j), \\
C(i j, i i ; i i)=\frac{1}{2} i(1-2 i), & C(i j, i i ; i g)=\frac{1}{2} g(1-4 i), \\
C(i j, i i ; j j)=\frac{1}{2} j(1-2 j), & C(i j, i j ; i j)=\frac{1}{2}(i+j-4 i j), \\
C(i j, i i ; j g)=\frac{1}{2} g(1-4 j) ; & \\
C(i j, i j ; i i)=\frac{1}{2} i(1-2 i), & C(i j, i k ; i k)=\frac{1}{2} k(1-4 i), \\
C(i j, i j ; i g)=\frac{1}{2} g(1-4 i) ; & C(i j, k k ; i j)=\frac{1}{2}(i+j-4 i j), \\
C(i j, i k ; i j)=\frac{1}{2}(i+j-4 i j), & \\
C(i j, i k ; j k)=\frac{1}{2} k(1-4 j) ; &
\end{array}
$$

Several identities are satisfied by C; for instance, we have
$\sum C(\alpha \beta, \gamma \delta ; a b)=\sum \bar{A}_{a b} C(a b, \gamma \delta ; \xi \eta)=0, \sum \bar{A}_{a b} C(\alpha \beta, a b ; \xi \eta)=Q\left(\alpha \beta, \xi_{\eta}\right)$,
$\sum Q(a \beta ; a b) E(a b, \gamma \delta ; \xi \eta)=\sum Q(a \beta ; a b) C(a b, \gamma \delta ; \xi \eta)=\frac{1}{2} C(\alpha \beta, \gamma \delta ; \xi \eta)$.
3. Ancestors-sdecendant combination immediate after a marriage

The defining equation of the third system with $\mu, \nu>0, n=1$:

$$
\varepsilon_{\mu \nu ; 1}(\alpha \beta, \gamma \delta ; \xi \eta)=\sum \kappa_{\mu}(\alpha \beta ; a b) \kappa_{\nu}(\gamma \delta ; c d) \varepsilon(a b, c d ; \xi \eta)
$$

leads to an expression

$$
\varepsilon_{\mu \nu ; 1}(\alpha \beta, \gamma \delta ; \xi \eta)=\bar{A}_{\xi \eta}+2^{-\mu} Q\left(\alpha \beta ; \xi_{\eta}\right)+2^{-\nu} Q\left(\gamma \delta ; \xi_{\eta}\right)+2^{-\mu-\nu} D_{0}(\alpha \beta, \gamma \delta ; \xi \eta) .
$$

The values of a quantity defined by

$$
\begin{aligned}
D_{0}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right) & =4 \sum Q(\alpha \beta ; a b) Q(\gamma \delta ; c d) \varepsilon\left(a b, c d ; \xi_{\eta}\right) \\
& =2 \sum Q(\alpha \beta ; a b) C_{0}\left(\gamma \delta, a b ; \xi_{\eta}\right)
\end{aligned}
$$

are set out in the following lines:

$D_{0}(i i, i i ; i i)=(1-i)^{2}$,	$D_{0}(i i, i i ; i g)=-2 g(1-i)$,
$D_{0}(i i, i i ; g g)=g^{2}$,	$D_{0}(i i, i i ; f g)=2 f g$;
$D_{0}(i i, i k ; i i)=\frac{1}{2}(1-i)(1-2 i)$,	$D_{0}(i i, i k ; i k)=\frac{1}{2}(1-i-3 k+4 i k)$,
$D_{0}(i i, i k ; k k)=-\frac{1}{2} k(1-2 k)$,	$D_{0}(i i, i k ; i g)=-\frac{1}{2} g(3-4 i)$,
$D_{0}(i i, i k ; k g)=-\frac{1}{2} g(1-4 k) ;$	
$D_{0}(i i, k k ; i i)=-i(1-i)$,	$D_{0}(i i, k k ; i k)=1-i-k+2 i k$,
$D_{0}(i i, k k ; i g)=-g(1-2 i) ;$	
$D_{0}(i i, h k ; i k)=\frac{1}{2}(1-i-2 k+4 i k)$,	$D_{0}(i i, h k ; h k)=-\frac{1}{2}(h+k-4 h k) ;$
$D_{0}(i j, i j ; i i)=(1-2 i)^{2}$,	$D_{0}(i j, i j ; i j)=\frac{1}{2}(1-2 i-2 j+4 i j)$,
$D_{0}(i j, i j ; i g)=-g(1-2 i) ;$	
$D_{0}(i j, i k ; i j)=\frac{1}{(1-2 i-4 j+}$	c; $j k)=(1-2 j-2 k$

The quantity $D_{0}(\alpha \beta, \gamma \delta ; \xi \eta)$ satisfies, besides a symmetry relation with respect to $\alpha \beta$ and $\gamma \delta$, further identities

$$
\begin{aligned}
& \sum D_{0}(\alpha \beta, \gamma \delta ; a b)=\sum \bar{A}_{a b} D_{0}\left(a b, \gamma \delta ; \xi_{\eta}\right)=0, \\
& \sum Q(\alpha \beta ; a b) D_{0}(\gamma \delta, a b ; \xi \eta)=\frac{1}{2} D_{0}(\alpha \beta, \gamma \delta ; \xi \eta) .
\end{aligned}
$$

4. Ancestors-descendant combination distant after a marriage

The reduced probability for the last generic system with $\mu, \nu>0$, $n>1$ is given by an equation

$$
\varepsilon_{\mu \nu ; n}(\alpha \beta, \gamma \delta ; \xi \eta)=\sum \varepsilon_{\mu \nu ; 1}(\alpha \beta, \gamma \delta ; a b) \kappa_{n-1}(a b ; \xi \eta)
$$

whence follows

$$
\varepsilon_{\mu \nu ; n}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right)=\bar{A}_{\xi \eta}+2^{-n+1}\left\{2^{-\mu} Q(\alpha \beta ; \xi \eta)+2^{-\nu} Q\left(\gamma \delta ; \xi_{\eta}\right)\right\} .
$$

In fact, there holds identically a relation

$$
\sum D_{0}(\alpha \beta, \gamma \delta ; a b) Q(a b ; \xi \eta)=\sum D_{0}(\alpha \beta, \gamma \delta ; a b) \kappa(a b ; \xi \eta)=0 .
$$

It is in passing shown here that there holds a further identity $\Sigma Q(\alpha \beta ; a b) C(\gamma \delta, a b ; \xi \eta)=0$.

Asymptotic behaviors of $\varepsilon_{\mu \nu ; n}$ as μ, ν, or n tends to ∞ are readily derived. There hold, in fact, the limit equations
$\lim _{\mu \rightarrow \infty} \varepsilon_{\mu \nu ; n}(\alpha \beta, \gamma \delta ; \xi \eta)=\kappa_{\nu+n}(\gamma \delta ; \xi \eta), \quad \lim _{\nu \rightarrow \infty} \varepsilon_{\mu \nu ; n}(\alpha \beta, \gamma \delta ; \xi \eta)=\kappa_{\mu+n}(\alpha \beta ; \xi \eta)$, and

$$
\lim _{n \rightarrow \infty} \varepsilon_{\mu \nu ; n}(\alpha \beta, \gamma \delta ; \xi \eta)=\bar{A}_{\xi \eta},
$$

which are valid for any values of μ, ν, n with $\nu \geqq 0, n \geqq 1$, with $\mu \geqq 0, n \geqq 1$, and with $\mu \geqq 0, \nu \geqq 0$, respectively.

