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By the representation theorem for (AL)-space, the conjugate
space R(tg)of the Banach space C(/2) composed of all continuous
complex valued functions vanishing at infinity on a locally compact
Hausdorff space t? i.e. the space of all bounded complex Radon
measures on Y2 is isomorphic to L(F) on a suitable localizable
measure space F. Hence the conjugate space of R(tg) is isomorphic
to L(F). As the measure space F is localizable, L(1") considered
as the set of multiplication operators on L"(F) is a maximal abelian
subring in the ring of all bounded operators on L(F),s) this implies
L(F) is a weakly closed operator algebra i.e. a W*-algebra. On
the other hand, the double conjugate space of the Banach space
composed of all completely continuous operators on a Hilbert space
H is isomorphic to the space B(H) of all bounded operators on
H.)) From these special cases, we get naturally the following"
conjecture" Is the double conjugate space of a uniformly closed self-
adjoint operator algebra or equivalently a B*-algebra always iso-
morphic to a W*-algebra considered as a Banach space? The affirmative
of this conjecture was announced by S. Sherman,") but its detailed
proof is not published yet now. In 2 of this note, we give a
proof of this theorem. By a letter from S. Sherman the author
learned that his original proof is essentially same with our own.
In this occasion, we want to express our hearty thanks for his kind
regards. Recently J. Dixmier has shown that a W*-algebra con-
sidered as a Banach space is always isomorphic to the conjugate
space of all ultra-weakly continuous linear functionals2 Observing
this remarkable property of W*-algebras, we give in 3 a charac-
terization of W*-algebras. Even though this characterization does
not depend on the algebraic structure of the algebra,) it seems
for us to have some interestings especially from the view point
of the non-commutative integration theory. The detailed explana-
tions of this point will be shown in the forthcoming paper.

1. In this section, we give a theorem due to g. Dixmier as a
preparation for the followings. Let A, A be a Banach space and
its conjugate space respectively and by , . denote the unit sphere

of each space. For a closed subspace V of A we define its charac-
teristic r by
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If(x)lr-- inf sup

Then r satisfies always 0 __< r _<_ 1. We call a weakly dense subspace
V of A minimal if any other subspaces of V is not weakly dense

in A. About many interesting properties of hese concepts we may
refer to Dixmier’s paper.)

We need the Dixmier theorem in the following form.)

Theorem. The necessary and su.cient condition for a Banach
space A to be isomorphic to a conjugate space of a suitable Banach
space is to exist in A a minimal subspace V with its characteristic
r-1. In this case, A is isomorphic to the conjugate space of V.

Then, as a corollary of this theorem we get" The unit sphere
of A is compact by the topology a(A, V) for V stated in the theorem.
2. Analogously o the Jordan decomposition of a measure, we

get the following decomposition of a linear functional on a B*-algebra.
Lemma. Let A be a B*-algebra. Then every bounded linear

functional on A can be expressed by a finite linear combination of
states of A.

Proof. The state space S of A is generally a locally compact
Hausdorff space. Let o.(a) be the value of aeA for a state a.

Defining a(a),.(a) for each point a of the state space, we can as-
sociate for every a e A a continuous function a(a) on 2 vanishing
at infinity. Then clearly we get the followings"

( 1 ) (aa +/b)(a)=aa() +b() for a, b e A and complex numbers

(2) a(a) is real valued for a hermitian element a.
8 a(a) is non-negative for a hermitian non-negative element a.

Generally a()l llall. Let us suppose A be a uniformly closed
operator algebra on a certain Hilbert space H and a A be a
hermitian operator, hen, as well known,

[lall-= sup <:ap, p> [,

where <, > shows the inner product of H. Hence the real Banach
space A composed of all hermitian elements of A is isometrically
isomorphic to a subspace M of the space C(S) of all real valued
continuous unetions vanishing at infinity on S and the positiveness
is preserved by this isomorphism.

Let f be a bounded linear functional on A, then f--g+ ih where
g, h are real valued linear funetionals on A. These g and h can be
considered as bounded linear functionals on M and can be extended
over C(S). Let , h be these extensions, then , h are nothing but
real Radon measures on S. We decompose into two positive Radon
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measures , such as Y.=)- and s,s be the normalization of, respectively (i.e. =as, aO, lls[l=l). Hence is expressed
by =a,s,-a. and the restriction of st on M gives a state on

A. Similarly we can decompose h into h:a-as, hence f is
decomposed into f-aa-a.+ia-iae as desired, q.e.d.

For each a S, we construct a Hilbert space H by the usual
method and a be the standard representation of a e A on Ho.
H= ]H be the direct sum of H (a e S) and a be the operator

on H which plays as same as a on each component space Ho.
Then the mapping a-> a gives a one-to-one representation of A
on H and so the norm is preserved by this representation. Let A-be the image of this representation, then, by the above, A and A-are isomorphic as Banach spaces especially. Put the weak closure
of this operator algebra A be W, then we get S. Sherman’s theorem.

Theorem I. The double conjugate A of the Banach space A is
somorphic to the Banach space W.

Proof. A state o on A can be expressed ao(a)-<aY q0’
by an element Po in Hoo. Hence we define cp eH ">H as follows"

(S

60-component of o--oo0, a-component of cp=0 for a =a0, then the
state o can be represented as ao(a)-<aq, cp> by the element
of H. A state defined by such an element (p e H is called a canon-
ical state. Now, by the above lemma, a linear functional on A
can be considered as a finite linear combination of canonical states
o A. Conversely a finite linear combination oi canonical states of
A defines a linear functional on A. In the followings, we identify
all finite linear combinations of canonical states of A which define an

identical linear unctional on A, then the conjugate space A of the
Banach space A is isomorphic to the space V constructed by all
classes of finite linear combinations of canonical states of A.

Let a A converges to w e W weakly, hen < a9o, > con-

verges to < wo, v for each cp, v e H, and so (. aq, v con-
ll

verges to <: wq, t.> for every q, e H. Hence all finite linear
il

combinations of canonical states which are identified on A define
a unique bounded linear functional f on W. In this case, the norm
of the linear functional f on A is given by [Ifll. sup

and the norm of f on Wis llfllw sup If(w)l. On the other hand,

the unit sphere of Au is weakly dense in he unit sphere of W.)
Hence by the weak continuity of f, we get ]]f]] IIfll.w.

As the last step of the proof, we show that the Banach space
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W is isomorphic to the conjugate space of V. This is clear from
a theorem of Dixmier’ but we give here a short proof. As
every functional f e V permits a representation f(a
by cp, v e H, an element F of the conjugate space V of V defines
a bounded bilinear functional on H and so defines an operator t on
Hsuch as F(f)-<tcp, 7> for every f V. Moreover, if ge V is
given by g(a) <aa’o, where a’ is an operator in the com-
mutor A’,F(g)-(.ta’q,>. As <aa’q,>-<aq,a’*, F(g)
< tq, a*v < atq, v >. Hence t e W and the remainder of the

proof is evldent, q.e.d.
3. In the first place, we introduce a concept which plays a

prominent r61e in this section.

Definition. If a closed subspace V of the conjugate space A
of a B*-algebra A satisfies the following four conditions"

(i) V is minimal.
(ii) The characteristic r of V=I.
(iii) If f e V, then f _J am where m are states contained in

V and a, are complex numbers.
(iv) Let f e V and a, b e A, then g(x) defined by g(x)-f(a*xb) is

contained in V.
Then we call V a rudimentary subspace of A.

Theorem 2. In order that a B*-algebra A has a representation
as a weakly closed operator algebra, it is necessary and sufficient to
have a rudimentary subspace in the conjugate space

Proof. Necessity. When A is represented as a weakly closed
operator algebra A on a Hilbert space H, denote the representation
of ae A by a. Then the Banach space A is isomorphic to the
conjugate space o V composed of all ultra-weakly continuous linear
functional f of A, which can be described in the ollowing orm"

f(a) ] < aq,, , where q,, e H satisfy

] I! II<: + .) Therefore V is minimal in A and its characteristic
r-1.

By the identity
4<aq,> <a(q +v), o+> <: a(o-), q-:>

+ i< a(q + iv),q +i> --i< a(q-iv),
clearly V satisfies the condition (iii).

If g(x) is a functional defined by g(x)=f(a*xb) for an ultra-weakly
continuous linear functional f(x)--_<aq*, w

g (x) f(a* xb)= , < aa*xba q,, >
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i=1 i=l

V satisfies the condition (iv), too.
Therefore the space V defined as above is a rudimentary sub-

space in the space A.
Suciency. S be the set of all states contained in a rudimentary

subspace V. Then for each state a e S, we construct a Hilbert
space H as usual and H-H be the direct sum of these spaces.

a be the representation of a A as an operator on H, then we get
an isomorphic representation of A as a uniformly closed operator

algebra Aa on H. For, since V is dense in for each non-zero
aeA, there exists an fe V such as f(a)O, hence exists a aeS
such as a(a) 0. This concludes a 0.

Next we show Aa is weakly closed. By the condition (iii)
f e V is represented by a finite linear combination of canonical
states on A, hence the weak operator topology on Aa induced by
H is stronger than the topology a(A, V). On the other hand, let
a be the standard mapping of ae A into H and be the H-
component of eeH, then for each eeH there exists a H
which satisfies the following two conditions"

1

(B) Ho-eomponent of . is all 0 except of finite numbers and
or non-zero . there exists b
Similarly for v e H we take out v. such as V.o=C%, c (A for each
non-zero -eomponent v.. Then for f(a) and f.(a) defined by

<a, v>, <a., .> respectively,

f (a) < a , < a, >

A(a) < ae, v
(c*ab).

The latter summation is a finite sum in practice and so
a(c*ab) V. Moreover

aA, Ilall
sup <a,> <a,

I1

This shows V is strongly dense in the set U of all finite linear
combination of canonical states. Therefore, on the unit sphere
of A, the topology (A, ) coincides with the weak operator opology
(A, U). is compact by a(A, V), hence so by a(A, U).
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Let M be the weak closure of A on H, then for each mM
there exists a directed family a A such as a converges to m
weakly and li a Ii II m II for all a. From the compactness of .
by a(A, U), a subfamily of a has a limit point in A. Therefore
m Av. This shows the weak closedness of A. q.e.d.

By Dixmier’ a state on a W*-algebra is ultra-weakly continuous
if and only if it is normal and the normality of a state is a purely
algebraical property. From this fact combined with Theorem 2 it
follows:

Theorem 3. If there exists a rudimentary subspace in the con-
jugate space of a B*-algebra, it is unique and is nothing but the set
of all finite linear combinations of normal states.

Remark. It is known that for any commutative W*-algebra,
every normal state is a canonical one. Of course, this is not
true for non-commutative cases. However the space H constructed
in the proof of Theorem 2 is a special Hilbert space on which the
above-methioned Pallu de la Barrier’s theorem remains true always.

References

1) J. Dixmier: Sur un theoreme de Banach, Duke Math. Journ., 15, 1057-1071
(1948).

2) J. Dixmier" Les fonctionnelles lingaires sur l’ensemble des opgrateurs bornes
d’un espace de Hilbert, Ann. Math., 51, 387-408 (1950).

3) J. Dixmier" Formes linaires sur un anneau d’oprateurs, Bull. Soc. Math.
France, 81, 9-39 (1953).

4) S. Kakutani: Concrete representation of abstract (L)-space and the mean
ergodic theorem, Ann. Math., $t2, 523-537 (1941).

5) I. Kaplansky" Projections in Banach algebras, Ann. Math., 53, 235-249
(1951).

6) I. Kaplansky: A theorem or rings of operators, Pacific Journ. Math., 1,
227-232 (1951).

7) R. Schatten: A theory of cross-space, Princeton (1950).
8) I. E. Segal: Equivalence of measure spaces, Amer. Journ. Math., 51, 275-

$13 (1950).
9) S. Sherman" The second adjoint of a C*-algebra, Proc. Inter. Congress

Math., 1, 470 (1950).
10) Z. Takeda: On a theorem of R. Pallu de la Barrier, Proc. Japan Acad., 28,

558-563 (1952).


