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15. On the Structure of Algebraic Systems

By Tsuyoshi FUJIWARA
Department of Mathematics, Yamaguchi University
(Comm. by K. SHODA, M.J.A., Feb. 12, 1954)

The structure of an algebraic system A has been discussed by
K. Shoda®* under the following conditions :

SI. A has o null-element.

SII. The subsystem generated by any two normal subsystems of A
28 normal in A.

SIII. The meromorphism of any two algebraic systems which are
homomorphic to A is always class-meromorphism.

(SII and SIII are asswmed for any subsystem of A.)

G. Birkhoff has introduced in his book® the following condition
which is equivalent to SIII: all congruences on A are permutable.

In the present paper we shall give a new definition of normal
subsystems, and study on the normal subsystems and the congruences
of an algebraic system A (§1). Moreover under weaker conditions
than SII, SIII (§ 2), we shall discuss the Jordan-Holder-Schreier theorem
(83) and the Remak-Schmidt-Ore theorem for A (§4).

§1. Normal Subsystems and Congruences. Throughout this
paper we put the following conditions on the algebraic system A to
keep out the complication.

0. All compositions are binary and single valued, moreover any
two elements may be composable by any composition.

I. A has a null-element e (eae=e for any composition a).

A subset B of A is called a subsystem if B is closed under any
composition of A and contains e.

Let f(§,..., &) be a polynomial by compositions of A. In the

following f(X, «,,..., ®,) denotes the set {f(x, %, ..., %,) :x€ X},
where XCA, x,,..., 2,€ A. Then f(X, %, ..., x,) is of course a
subset of A.

Definition 1. A subset C is called a coset if and only if the
SJollowing condition holds for any polynomial f(&,..., &) and any
elements x,,..., v, € A,

fF(C, %y ... , 2,)~Cxp tmplies f(C, Xy ..., 2,)C.
A coset C 1is called a mormal subsystem, when C forms a subsystem
of A.

Theorem 1. Any coset C is a residue class of a congruence and
conversely.
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Proof. We define aXb (a, be A) when there exist polynomials
S1s «+ > fu such that
a € fi(C, Ty o ...y Tu,m),
Ji(C, Tr9 .0y xl,rl)’“fz(c’ P29 « o 0 wz,rz):\:¢’

....................................

fn—l(C’ Tn—1,29 + 0«3 wn—l,r"_l)r\fn(c’ Tn,zs o o0 wn.r”)#(p’

Io(Cy Tz« oy Tnp,) 2D
It is easily verified that the relation 6 is a congruence on A. Since
Ccf(C) for the polynomial f(§)=§, C is contained in a class C’
corresponding to the congruence 6. Then C=C’ follows from the
definitions of 6 and the coset. Therefore @ is a congruence having
a giving coset C as a class. The converse follows from the property
of the congruence.

Remark. In order that any two elements of C are to be con-
gruent by a congruence ¢, it is necessary that ¢ has the property
of 8. Hence the congruence 6 is the least one corresponding to the
coset C.

K. Shoda and G. Birkhoff have defined normal subsystems as
follows: The residue class of A with respect to a congruence which
contains e s called a mormal subsystem of A. This definition is
evidently equivalent to our definition.

In the following 6, denotes the congruence of a subsystem L,
0.(B) the congruence naturally induced by 6, on BCL. B/6;, denotes
the residue class system of B with respect to 0.(B). For a subset
MCB, we denote by (M|0,(B)) the set {(z:2Z2meM}. If M is a
subsystem of B, then the set (M[0.(B)) forms clearly a subsystem
of B.

Theorem 2. Let C be any subsystem such that (B|0,)D>CDB.
Then Cj0. and B[O are isomorphic.

Proof. Let {C;} be the set of all cosets of C corresponding to
6.(C), and let B,=C;~B, then {B,} is the set of all the cosets of B
corresponding to 6,(B). And the correspondence C,«>B, is evidently
an isomorphism of C/8, and B/9,.

Theorem 3. Let LDBDC, MDC, and 6, (C)<q.(C). Then the
congruence @,(C) can be extended on the subsystem (C|6.(B)).

Proof. Let a,be(C|9.(B)). We define a~b if and only if there

. 0,,(B) ()] 0,(B oL s . .
exist x;, @, € C such that a=t=2x, 222y, 222p. Then it is easily veri-

fied that the relation ~ is a congruence on (C|0.(B)). And by 6.(C)
=ou(C) the congruence ~ is equivalent to ¢,(C) on C.

In the following we denote by [@x(C)|0.(B)] the extended con-
gruence of ¢4(C) as in Theorem 3.

Definition. 2. Let N be a normal subsystem of A. The congruence
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0 is called a lower-congruence if 6 is a least congruence correspond-
ing to N.

The lower-congruence corresponding to N may be constructed as
in the proof of Theorem 1. Hence we can easily prove the following:

Theorem 4. The join of any two lower-congruences s a lower-
congruence.

8§2. Conditions for Algebraic Systems. In order to extend
our theory, we discuss some conditions for the algebraic system A.

Let 6(B) be a congruence on a subsystem B. We denote by
S.(6(B)) the coset containing x ¢ B which corresponds to 6(B), and
for convenience, by S(6(B)) the normal subsystem S,(6(B)).

We consider the following conditions :

II.  (S(®)lp)=(S(p)I0) for any lower-congruences 6, ¢ on A.

Ir*.  (SOULAM))pslL~M))=(S(@u(LAMNOLLAM)) for any
lower-congruences 6, and ¢  on L and M respectively, where L, M are
any subsystems which appear in normal chains of A.

III.  (S(8)lp)=(S)I0) for an element x satisfying S(0)~S, (),
where 0 and ¢ are lower-congruences on A.

Using our notations we can describe the condition SIII as follows :

(S:O)lp)=(Sy(@)|0) for =, y satisfying S,(0)~S,(p)¢.

Then the condition SIII* that any subsystem B of A satisfies the
condition SIII can be described as follows:

(SA6B)p(B))=(Sp(B)IO(B)) for =, y satisfying

S(6(B) ~Sy(p(B)) .
By the above descriptions of the conditions we can easily see the
following implications:

SII*—>SIII->1II->II and SIIT*—>II*—>II.

We now prove the

Theorem 5. The condition SII implies II.

Proof. Let 6, ¢ be any lower-congruences on A. Let » be the
lower-congruence corresponding to the subsystem B generated by
S(6) and S(p). Since the subsystem (S(6)|p) contains S(6) and S(p),
S(w)=B(S(0)lp). On the other hand, S(0)>S(p) implies w=>¢, and
therefore S(w)D(S(@)lp). Hence S(w)=(S(0)lp). Similarly S(w)=
(S(p)l0). Therefore we get (S(6)p)=(S(p)|8).

Theorem 6. If A has the condition II, then the set &, of all the
normal subsystems of A forms a modular lattice under meet, the inter-
section and join S(0)—S(p)=(S(6)|p) where 6, ¢ are lower-congruences
on A.

Proof. Let 6, ¢ be lower-congruences. Then S(9)~ S(p)=S@- ¢),
since S(0)—S(p)=(SO)lp)=(S(p)|9). By the definition we have S(6)
~S(p)=SO@~p). 6~¢ is not always a lower-congruence, we denote
by 6~¢ the lower-congruence corresponding to S(6~¢). Then
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(8(6)~S(9))~S(6)=S(0 ~p)~S(6) =S50 ~p)—S(6) =S(6~p)—0)=S(6).
Since 6 ¢ is a lower-congruence, (S(6)w—S(p))~S(0)=S(6-p)~S(6)
=S((0—p)~6)=S(6). Hence 8, forms a lattice.

Let 6, ¢, be lower-congruences. Let S(p)&S(p.) and S(p;)—
S(0)=S(p,)~S(6). From S(p)<S(p:) We get ¢;<g,. Then (S(0)lpy)/
@1=S(p1)—8(6)/p1=8(p5)~S(0)/ 01> S(p:) /1. Hence S(p,)/p; contains
at least one coset different from S(gp;). Hence S(p;)~S(0)&S(@.)~
S(9). Therefore £, is modular.

§3. Normal Chains. We denote by B//N the residue class
system of B(CA) with respect to the greatest congruence corre-
sponding to a normal subsystem N of B.

Theorem 7. (Schreier theorem for normal chains) If A has the
condition II*, then any two finite normal chains
(1) A=A03S(60(Ao))=1413 < D8(Op-1(An-1))=A,=e,

(2) A=B,DS(@(B))=B1>+  * DS(@n-1(Bn-1))=Bn=e

can be refined by interpolation of terms A, ;=(A,~B;|0,(4,)) and B,;
=(A;~Bjlp,(B;)) such that A, ;/|A; ;.1 and B, ;//B;..,; are tsomorphic,
where 0,(A,),p;(B;) are lower-congruences on A;, B; respectively.

Proof. Let w(A,~B)=0(A;~Bj))~p(A,~Bj). Then [w(A,~B))]
6,(A)] is just defined on (4,~B,6,(4,). And we get

S([e(A;~Bplo(A)]) = (S(e(4:~B))I0:(A,)

=(S(0(Ai~B))~ p (A~ B))0(A) = ((S(ps(Ai~B)) 0 A~ By))16(A))
=(S(p(A~B))0,(A))= (A~ S(p,B))I0(A.))
=<Atf“BJ+1|9t(A4))=At,j+1~
Hence (1) is refined by interpolation of terms A, ;. Similarly (2) is
refined by interpolation of terms B, ;.
Since (A;~Bj|[w(4;~B)I0(A)])=(A:~B,l6(A)), we get
(A,~BJl6(A)) [o(A~B)I6(A)]
=A,~B)/[w(A;~B))|0(A;)] =A,~Bjlo(4,~B;).
Similarly (4;~BlpAB))/[w(A;~B)lpB))]e=A,~Bjlo(A;~B)). Hence
A i/ [o(A~B))|0(A)]==B, ;/[o(A;~B)lpi(B)]. Therefore A, ;//A; ;.12
B, ;/|B; 1,5

Remark. The Schreier theorem for normal chains consisting of
normal subsystems follows from the modularity of the lattice €.

§4. Direct Decompositions. In the following we assume that
A has not only the conditions 0 and I but also III.

Theorem 8. Let 6, ¢ be any lower-congruences on A such that
0~p=0, then SO« ) and S(@) x S(p) are isomorphic.

Proof. For any element x in S(6—¢), we denote by S,(0) the
coset of S(@—¢)/0 containing x, and by S,() the coset of S(6—p)/p
containing . Then the correspondence z—(S,(p), S,(6)) is a homo-
morphism of S(@—¢) onto a subsystem B of S0« p)/p x SO »)/6.
Since § ~9=0, the homomorphism is an isomorphism. By the condi-
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tion III, we get S,(p)~S,(0)=¢ for any z, y in S(¢—¢). Hence B=
SO p)/p x S(@—p)/6. Using 6 ~p=0, we get easily

S0 p)lp=(5(6)l9p)/0==25(6)/6 ~p=25S(6).
Similarly S(0—9)/0=S(p). Hence S(@-—¢) and S(0)xS(e) are iso-
morphic,

Theorem 9., Let A=S(6,)—-.-<S(0,) be any representation of
A as a direct join decomposition in the lattice .. Then A is isomorphic
to S(@,) x +++x8(6,) ©f A has the condition (x): S(0)=e tmplies 6=0.

Proof. There exist lower-congruences ¢’; such that S(6',)=S(,).
Putting ¢’, in place of 6,, we get by the assumption
(SO~ - ~SE"1-1))~S(6')=e. Hence S(¢,w .- )~S()=¢,
S((¢'y~ - b _1)~0)=e. Using the condition (x), we get (¢'y—---
@ )~¢,=0. Hence by Theorems 4 and 8, we get S~ ----¥¢,)
=S - w0,_;)xS@),). Therefore A=S(0,)X ++-xS(b,).

Theorem 10. Let A=A, x-.--x A, be any representation of A
as o direct product. If A has not an infinite normal chain, then
there exist lower-congruences 0, ..., 6, such that S(0)=A, and
A=S8(0,)—+++~86,) is a direct join decomposition in the lattice L..

Proof. We denote by 45 a~(ay,..., a,) € A; X --- XA, the cor-
respondence of the isomorphism of A and A; %X ---xA4,. We define
(@, ..., an)~ai—=’f—.b~(b1, ...y b,) when a,=b, for k=3=¢. Then ¢, is a
congruence on A such that S(¢,)=A, Let 6,,...,0, be lower-
congruences such that S(4,)=S(67), then A=S(6,)x -+ xS86,). Since
6y ..., 0, are independent, 4,,..., 6, are independent. Hence by
Theorems 4 and 8, S(f;— -+ -—8,)=S(O;— ---—0,_,) xS(@,). Therefore
SO+ —0,)=50,) % -+ - xSOn)=A. If S@,~-:---—6,)<A, then
there exists an infinite normal chain of A. This contradicts the
assumption of this theorem. Hence A=S(0;~---<0,)=8S(@)---
«8(6,). And it is evident that A=S(6,)~ ---—S(6,) is a direct join
decomposition in the lattice L.

Theorem 11. (Remak-Schmidt-Ore theorem for direct join de-
compositions) Let A=S8(0,)w - -+ —S(6n)=S(pi)~++ v S(pm be any
two representations as a direct join decomposition of indecomposable
factors in the lattice 4. If (¢) A has the condition (x), (i¢) 4 has
finite length, then n=m, and S(,), S(p) are pairwise isomorphic,
moreover S(6,) and S(p;) are mutually replaceable.

Proof. By the modularity of ¢,, we get that n=m, and S(,),
S(p;) are pairwise projective, moreover S(4,) and S(p,) are mutually
replaceable., Assuming that 6;,..., 6, @i,..., n are lowér-con-
gruences without loss of generality, we get that 6}=60,—---—0,_4
By~ + - -0, 1s alower-congruence. Hence A/6}=(S(6,)165)/6}=S(6,)
16F=8(6,)/6,~6F=S(6;). Similarly A/8}=(S(p))|0F)/0¥=S(p,)/0F =S(¢;)/
@;~0¥=8(p;). Therefore S(O,)=S(p,).
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Theorem 12. (Remak-Schmidt-Ore theorem for direct product
decompositions) Let A=~A; X --+- X A;=B; X -+« XB,, be any two rep-
resentations as a direct product of indecomposable factors. If (i) A
has the condition (x), (4t) A has no infinite normal chain, then n=m,
and A,;, B, are pairwise isomorphic.

Proof. This theorem is immediate by Theorems 9,10 and 11.
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