51. Probabilities on Inheritance in Consanguineous Families. VII

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology
(Comm. by T. Furuhata, m.J.a., March 12, 1954)

VII. Mother-descendants combinations through several consanguineous marriages

1. Special combinations with several consanguineous marriages

The main purpose of the present chapter is to determine the probability of a mother-descendants combination designated by
$\pi_{(\mu \nu ; n)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \bar{A}_{\alpha \beta} \kappa_{(\mu \nu ; n)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \quad\left(\mu=\mu_{t+1}, \nu=\nu_{t+1}\right)$.
By definition, the reduced probability $\kappa_{(\mu \nu ; \nu)_{t} \mid \mu \nu}$ is given by $\kappa_{(\mu \nu ; \nu)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{\left(\mu \nu ; \sim \nu_{t}\right.}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$.
Evidently, this probability is symmetric with respect to μ_{r} and ν_{r} for any r with $1 \leqq r \leqq t$, while it is quasi-symmetric with respect to μ and ν, i.e.

$$
\kappa_{(\mu \nu ; n)_{t} \mid \mu \nu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\kappa_{(\mu \nu ; n)_{t} \mid \nu \mu}\left(\alpha \beta ; \xi_{2} \eta_{2}, \xi_{1} \eta_{1}\right) .
$$

In the present section we first deal with the case where the n_{r}, μ and ν are all equal to unity. After substituting the known expressions, its defining equation yields

$$
\begin{aligned}
& \kappa_{(\mu \nu ; 1)_{t} \mid 11}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-t+1} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
&+4 u_{t} \sum R(a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2 v_{t} \sum S(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
&+4 w_{t} \sum T(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
\end{aligned}
$$

Thus, it remains only to determine the last three residual terms, i.e.

$$
\begin{aligned}
\mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & \sum R(a b) \kappa\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
\mathfrak{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\sum S(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
3\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\sum T(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
\end{aligned}
$$

which are evidently symmetric with respect to $\xi_{1} \eta_{1}$ and $\xi_{2} \eta_{2}$. Actual computation leads to the following results:

$$
\begin{array}{cl}
\mathfrak{X}(i i, i i)=\frac{1}{8} i^{2}(1-i)(1+i), & \mathfrak{X}(i i, i k)=-\frac{1}{4} i^{3} k, \\
\mathfrak{X}(i i, k k)=-\frac{1}{8} i^{2} k^{2}, & \mathfrak{H}(i i, h k)=-\frac{1}{4} i^{2} h k, \\
\mathfrak{X}(i j, i j)=\frac{1}{4} i j(1-2 i j), & \mathfrak{X}(i j, i k)=-\frac{1}{2} i^{2} j k, \\
\mathfrak{X}(i j, h k)=-\frac{1}{2} i j h k ; & \\
\mathfrak{Y}(i i ; i i, i i)=-\frac{1}{16} i(1-i)^{2}(1-2 i), & \mathfrak{Y}(i i ; i i, i g)=\frac{1}{8} i g(1-i)(1-2 i), \\
\mathfrak{Y}(i i ; i i, g g)=-\frac{1}{1} 16 g^{2}(1-2 i), & \mathfrak{Y}(i i ; i i, f g)=-\frac{1}{8} i f g(1-2 i), \\
\mathfrak{Y}(i i ; i k, i k)=-\frac{1}{16} k\left(1-4 i-k+3 i^{2}-8 i^{2} k\right), \\
& \\
& \mathfrak{Y}(i i ; i k, k k)=\frac{1}{16} k^{2}(1+i-5 k+4 i k), \\
\mathfrak{Y}(i i ; i k, i g)=\frac{1}{16} k g\left(1-7 i+8 i^{2}\right), & \mathfrak{Y}(i i ; i k, k g)=\frac{1}{16} k g(1-3 i-2 k+8 i k), \\
\mathfrak{Y}(i i ; i k, g g)=-\frac{1}{16} k g^{2}(1-4 i), & \mathfrak{Y}(i i ; i k, f g)=-\frac{1}{8} k f g(1-4 i),
\end{array}
$$

```
\(\mathfrak{Y}(i i ; k k, k k)=\frac{1}{16} k^{2}(1-k)(1-2 k), \quad \vartheta(i i ; k k, k g)=-\frac{1}{16} k^{2} g(3-4 k)\),
\(\mathfrak{y}(i i ; k k, g g)=\frac{1}{8} k^{2} g^{2}\),
\(\mathfrak{V}(i i ; k k, f g)=\frac{1}{4} k^{2} f g\),
\(\vartheta(i i ; h k, h k)=\frac{1}{16} h k(2-3 h-3 k+8 h k), \quad \vartheta(i i ; h k, k g)=-\frac{1}{16} h k g(3-8 k)\),
\(\mathfrak{V}(i i ; h k, f g)=\frac{1}{2} h k f g\),
\(\mathfrak{Y}(i j ; i i, i i)=-\frac{1}{32} i(1-i)\left(1+i^{2}\right), \quad 习(i j ; i i, i j)=\frac{1}{32} i\left(i+2 j-i^{2}-5 i j+8 i^{2} j\right)\),
\(\mathfrak{Y}(i j ; i i, j j)=-\frac{1}{32} i j(i+j-4 i j), \quad\) Э \((i j ; i i, i g)=\frac{1}{32} i g\left(2-5 i+8 i^{2}\right)\),
Yy \((i j ; i i, j g)=-\frac{1}{32} i g(i+2 j-8 i j), \quad \vartheta(i j ; i i, g g)=-\frac{1}{32} i g^{2}(1-4 i)\),
\(\mathfrak{Y}(i j ; i i, f g)=-\frac{1}{16} i f g(1-4 i)\),
\(\mathfrak{Y}(i j ; i j, i j)=-\frac{1}{32}\left(i+j-i^{2}-j^{2}+6 i j(i+j)-16 i^{2} j^{2}\right)\),
```

 \(\mathfrak{Y}(i j ; i j, i g)=\frac{1}{32} g\left(i+j-2 i^{2}-6 i j+16 i^{2} j\right)\),
 $\mathfrak{Y}(i j ; i j, g g)=-\frac{1}{32} g^{2}(i+j-8 i j), \quad 习(i j ; i j, f g)=-\frac{1}{16} f g(i+j-8 i j)$,
$\mathfrak{Y}(i j ; i k, i k)=-\frac{1}{32} k\left(1+2 i-k+4 i^{2}+6 i k-16 i^{2} k\right)$,
$\vartheta(i j ; i k, j k)=\frac{1}{32} k(i+j-6 i j-2(i+j) k+16 i j k)$,
$\mathfrak{Y}(i j ; i k, k k)=\frac{1}{32} k^{2}(1-6 i-k+8 i k), \quad \vartheta(i j ; i k, i g)=\frac{1}{32} k g(1-2 i)(1-8 i)$,
$\mathfrak{Y}(i j ; i k, j g)=-\frac{1}{16} k g(i+j-8 i j), \quad \vartheta(i j ; i k, k g)=\frac{1}{32} k g(1-6 i-2 k+16 i k)$,
$\mathfrak{Y}(i j ; i k, g g)=-\frac{1}{32} k g^{2}(1-8 i), \quad$ $\quad(i j ; i k, f g)=-\frac{1}{16} k f g(1-8 i) ;$
$3(i i ; i i, i i)=\frac{1}{16} i(1-i)(2-i)(1+i), \quad 3(i i ; i i, i g)=-\frac{1}{8} i^{2} g(2-i)$,
$\mathcal{Z}(i i ; i i, g g)=-\frac{1}{16} i g^{2}(2-i), \quad 3(i i ; i i, f g)=-\frac{1}{8} i f g(2-i)$,
$3(i i ; i k, i k)=\frac{1}{8} k\left(1-i+i^{2}+k(1-i)(1-2 i)\right)$,
$3(i i ; i k, k k)=-\frac{1}{8} k^{2}(1+k)(1-i)$,
$3(i i ; i k, i g)=\frac{1}{8} k g(1-i)(1-2 i), \quad 3(i i ; i k, k g)=-\frac{1}{8} k g(1+2 k)(1-i)$,
$3(i i ; i k, g g)=-\frac{1}{8} k g^{2}(1-i)$,
$3(i i ; k k, k k)=\frac{1}{16} k^{2}(1+k)^{2}$,
$3(i i ; k k, g g)=\frac{1}{16} k^{2} g^{2}$,
$3(i i ; h k, h k)=\frac{1}{8} h k(1+h+k+2 h k)$,
$3(i i ; i k, f g)=-\frac{1}{4} k f g(1-i)$,
$3(i i ; k k, k g)=\frac{1}{8} k^{2} g(1+k)$,
$3(i i ; k k, f g)=\frac{1}{8} k^{2} f g$,
$3(i i ; h k, f g)=\frac{1}{4} h k f g$,
$3(i j ; i i, i i)=\frac{1}{32} i(1+i)\left(1-2 i+2 i^{2}\right)$,
$3(i j ; i i, i j)=\frac{1}{32} i\left(1-i-j-2 i^{2}-2 i j+4 i^{2} j\right)$,
$3(i j ; i i, j j)=\frac{1}{32} i j(1-2 i-2 j+2 i j), \quad 3(i j ; i i, i g)=-\frac{1}{32} i g\left(1+2 i-4 i^{2}\right)$,
$3(i j ; i i, j g)=\frac{1}{32} i g(1-2 i-4 j+4 i j), \quad 3(i j ; i i, g g)=-\frac{1}{16} i g^{2}(1-i)$,
$3(i j ; i i, f g)=-\frac{1}{8} i f g(1-i)$,
$3(i j ; i j, i j)=\frac{1}{32}\left((1-4 i j)(i+j-2 i j)+i^{2}+j^{2}\right)$,
$3(i j ; i j, i g)=-\frac{1}{32} g\left(i-j+4 i^{2}+4 i j-8 i^{2} j\right)$,
$3(i j ; i j, g g)=-\frac{1}{16} g^{2}(i+j-2 i j), \quad 3(i j ; i j, f g)=-\frac{1}{8} f g(i+j-2 i j)$,
$3(i j ; i k, i k)=\frac{1}{32} k\left(1+k+4 i^{2}-4 i k+8 i^{2} k\right)$,
$3(i j ; i k, j k)=\frac{1}{32} k(1-2(i+j)+k+4 i j-4(i+j) k+8 i j k)$,
$3(i j ; i k, k k)=-\frac{1}{16} k^{2}(1+k)(1-2 i), \quad 3(i j ; i k, i g)=\frac{1}{32} k g\left(1-4 i+8 i^{2}\right)$,
$3(i j ; i k, j g)=\frac{1}{32} k g(1-4 i-4 j+8 i j), \quad 3(i j ; i k, k g)=-\frac{1}{16} k g(1+2 k)(1-2 i)$,
$3(i j ; i k, g g)=-\frac{1}{16} k g^{2}(1-2 i), \quad 3(i j ; i k, f g)=-\frac{1}{8} k f g(1-2 i)$.

Since, besides an evident symmetry character of $\mathfrak{X}, \mathfrak{Y}$ and 3 with respect to descendants' types, the quantities $\mathfrak{V}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ and $3\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ are both independent of $\alpha \beta$ provided $A_{\xi_{1} \eta_{1}}$ and $A_{\xi_{2} \eta_{2}}$ have no gene in common with $A_{\alpha \beta}$, all the possible cases have thus
been essentially worked out. The final expression for desired probability is thus written in the form
$\kappa_{(\mu \nu ; 1)_{t} \mid 11}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-t+1} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$

$$
+4 u_{t} \mathcal{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2 v_{t} \vartheta\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4 w_{t} 3\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
$$

which remains true also for $t=1$ with $u_{1}=v_{1}=0$.
By the way, we can readily deduce the relations

$$
\sum \mathfrak{X}\left(\xi_{\eta}, a b\right)=\sum \mathfrak{Y}\left(\alpha \beta ; \xi_{\eta}, a b\right)=\sum \mathcal{B}\left(\alpha \beta ; \xi_{\eta}, a b\right)=0 .
$$

We further remark that there hold the relations
$\sum \overline{A_{a b}} \vartheta\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=0, \quad \sum \bar{A}_{a b} 3\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$, $\sum Q(\alpha \beta ; a b) \mathscr{Y}\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum Q(\alpha \beta ; a b) 3\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\frac{1}{2} \eta\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$. We now consider the probability $\kappa_{\left(\mu \nu ; w_{t} \mid 11\right.}$ in which $n_{t}>1$ while $n_{r} \geqq 1$ for $1 \leqq r<t$. It is defined by the equation

$$
\kappa_{\left(\mu \nu ; m_{t} \mid 11\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{(\mu \nu ; n)_{t}}(\alpha \beta ; a b) \kappa\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
$$

Hence, we get the formula
$\kappa_{\left(\mu \nu ; \eta_{t} \mid 11\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-N_{t}+1} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$,
which remains true even when $t=1$.
We next observe the probability $\kappa_{\left.(\mu \nu ;)_{t}\right)_{1 \nu}}$ with $\nu>1$. The defining equation then yields

$$
\kappa_{(\mu \nu ; 1)_{t} \mid 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{(\mu \nu ; 1)_{t}}(\alpha \beta ; a b) \kappa_{1 \nu}\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
$$

Based on the relation

$$
\begin{aligned}
& \sum R(a b) W\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\frac{1}{2} \bar{A}_{\varepsilon_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right), \\
& \sum S(\alpha \beta ; a b) W\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\frac{1}{2} S\left(a \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \sum T(\alpha \beta ; a b) W\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=4 T\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
\end{aligned}
$$

we get the formula in the form

$$
\begin{aligned}
& \kappa_{\{\mu \nu ; 1\rangle_{t} \mid 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{1 \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
&+2^{-t} \Lambda_{t}\left\{\bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \\
& \quad+2^{-\nu}\left\{2 u_{t} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right)+v_{t} S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+w_{t} T\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\},
\end{aligned}
$$

which remains valid also for $t=1$ with $u_{1}=v_{1}=0$.
We finally consider the probability $\kappa_{\left(\mu \nu ; m m_{t} \mid 1 \nu\right.}$ in which n_{t} and ν are greater than unity while the n_{r} 's with $1 \leqq r<t$ may be arbitrary numbers equal to or greater than unity. Its defining equation becomes

$$
\kappa_{(\mu \nu ; p)_{t} \mid 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{(\mu \nu ; m)_{t}}(\alpha \beta ; a b) \kappa_{1 \nu}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
$$

and hence readily leads to the desired formula

$$
\begin{aligned}
\kappa_{(\mu \nu ; n)_{t} \mid \nu}(\alpha \beta ; & \left.\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{1 v}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& +2^{-N_{t}} \Lambda_{t}\left\{\bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\},
\end{aligned}
$$

which remains true even when t is equal to unity.
2. Generic combinations with several consanguineous marriages

We consider the probability $\kappa_{(\mu \nu ; \nu)_{t} \mid \mu \nu}$ for the generic case, namely with $\mu, \nu>1$.

We first deal with the case where the n 's are all equal to unity.

It is defined by the equation

$$
\kappa_{(\mu \nu ; 1)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{(\mu \nu ; 1)_{t}}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
$$

Based on the identical relations

$$
\begin{aligned}
\sum R(\alpha b) T\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\frac{1}{2} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right), \\
\sum S(\alpha \beta ; a b) T\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\frac{1}{2} S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
\sum T(\alpha \beta ; a b) T\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\frac{1}{4} T\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
\end{aligned}
$$

the desired formula is then given, with $\lambda=\mu+\nu-1$, by

$$
\begin{aligned}
& \kappa_{(\mu \nu ; 1)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\lambda+1} u_{t} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2 \eta_{2}}\right) \\
&+2^{t+1} \Lambda_{t}\left\{2^{-\mu} \bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu} \bar{A}_{\xi_{1}^{\prime} \eta_{1}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right\} \\
&+2^{-\lambda}\left\{\left(2^{-t+1} \Lambda_{t}+v_{t}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+w_{t} T\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} .
\end{aligned}
$$

We next observe the most generic case, i. e. $\kappa_{(\mu \nu ; n)_{t} \mid \mu \nu}$ with n_{t}, $\mu, \nu>1$. Its defining equation becomes

$$
\kappa_{\left(\mu \nu ; n_{t} \mid \mu \nu\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{(\mu \nu ; n)_{t}}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

and it leads to the desired formula
$\kappa_{\left(\mu \nu ; n_{t} \mid \mu \nu\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$
$+2^{-N_{t}+1} \Lambda_{t}\left\{2^{-\mu} \bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)+2^{-\lambda} S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\}$, which remains valid even when $t=1$.

Finally, we consider the probability $\kappa_{(\mu \nu ; n)_{t}\left|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}\right| \mu^{\prime} \nu^{\prime}}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ ($\mu^{\prime} \nu^{\prime}=\mu_{t^{\prime}+1}^{\prime} \nu_{t^{\prime}+1}^{\prime}$). The defining equation is then given by

$$
\begin{aligned}
& \kappa_{(\mu \nu ; n)_{t}\left|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}\right| \mu^{\prime} \nu^{\prime}}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& =\sum \kappa_{(\mu \nu ; \cdots)_{t}\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}}(\alpha \beta ; a b) \kappa_{p^{\prime} \nu^{\prime}}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
\end{aligned}
$$

We distinguish here three systems according to the generationnumbers $\left(\mu^{\prime}, \nu^{\prime}\right)$ of the descendants $\left(A_{\xi_{1} \eta_{1}}, A_{\xi_{\mathrm{g}_{2} \eta_{2}}}\right)$: $\mu^{\prime}=\nu^{\prime}=1 ; \mu^{\prime}=1<\nu^{\prime}$ or $\mu^{\prime}>1=\nu^{\prime} ; \mu^{\prime}, \nu^{\prime}>1$. It is shown that there hold the following formulas:

$$
\begin{aligned}
& \kappa_{(\mu \nu ; n)_{t}\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}} \mid 11}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& +2^{-N_{t}+1} \Lambda_{t}\left\{2^{-t^{\prime}} \Lambda_{t^{\prime}}^{\prime} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\left(v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) \mathscr{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\}, \\
& \kappa_{(\mu \nu ; n)_{t}\left|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}\right| 1 \nu^{\prime}}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{1 v^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& +2^{-\nu^{\prime}+1}\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \bar{A}_{\xi_{1 \eta_{1}^{\prime}}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right)+2^{-N_{t}} \Lambda_{t}\left\{2^{-t^{\prime}} \Lambda_{t^{\prime}}^{\prime}{\overline{\xi_{\xi_{2} \eta_{2}}}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)\right. \\
& \left.+2^{-\nu^{\prime}-t^{\prime}+1} \Lambda_{t^{\prime}}^{\prime} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\nu^{\prime}}\left(v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \\
& \kappa_{\left(\mu \nu ; \eta_{t} \mid\left(\mu^{\prime} \nu^{\prime} ;\left.1_{t^{\prime}}\right|^{\prime} \nu^{\prime}\right.\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu^{\prime} \nu^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& +2^{-\lambda^{\prime}+1}\left(u_{l^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right){\overline{\xi_{\xi_{1}}^{1} \eta_{1}}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& +2^{-N_{t}-t^{\prime}+1} \Lambda_{t} \Lambda_{t^{\prime}}^{\prime}\left\{2^{-\mu^{\prime}}{\overline{\xi_{5_{2} \eta_{2}}}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu^{\prime}} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right\} \\
& +2^{-N_{t}-\lambda^{\prime}} \Lambda_{t}\left(2^{-t^{\prime}+1} \Lambda_{t^{\prime}}^{\prime}+v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
\end{aligned}
$$

with $\lambda^{\prime}=\mu^{\prime}+\nu^{\prime}-1$.

