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65. On Infinite-dimensional Representations of Semi-
simple Lie Algebras and Some Functionals
on the Universal Enveloping Algebras. I

By Shoichir6 SAKAI
(Comm. by K. KUNUGI, M.J.A., April 12, 1954)

During the past few years, Harish-Chandra®*® has obtained the
very important results on the representations of semi-simple Lie
groups on Banach spaces, and R. Godement® has obtained elementary
and elegant proofs for some of them with many new results. Let
G be a connected semi-simple Lie group, &, the Lie algebra of G,
and G, the adjoint group of &, Then it is well-known that G, has
the form K,-S,, where K, is a maximal compact subgroup and S,
a solvable subgroup and K, S,=(¢). Let K be the inverse image
of K, in G, S some solvable subgroup of G isomorphic to S, with
G=K.S. In his theory of spherical functions, Godement essentially
assumed the compactness of K, and has shown that there is a one-
to-one correspondence between irreducible unitary representations
of G and finite dimensional irreducible unitary representations of his
algebra L°(d) (unpublished); this result is more useful for the
determination of all irreducible unitary representations of G than the
corresponding result due to Chandra. However, as K is in general
the direct product of a compact subgroup and a vector subgroup, it
is desirable to find a way which makes the Godement’s restriction
stated above unnecessary. The object of this paper is to extend
the considerations of the author to the semi-simple Lie algebra and
to make it adequate for this requirement.

Let &, be a real Lie ring, f, be a subring of &, and G, be the
adjoint group® of ©, K, be the analytic subgroup™ of G, corre-
sponding to K,.*> We shall assume that K, is compact. Let & and t
be the complexification of &, and ¥, respectively, and U(®) and U ()
be the universal enveloping algebra of & and f respectively, then
U®®) can be considered as a subalgebra of U(S).

Since the elements of G, are automorphisms of &, they are
uniquely extended to automorphisms of U(®), which we shall denote
by a— em0e,_;=ad (x)a(x € G,), and call the correspondence - ad (x)
the adjoint representation of G,.”

Let 2 be all equivalence classess of finite-dimensional irreducible
representations of the ring f, then © can be considered to be all
equivalence classes of finite-dimensional irreducible representations
of U®). Let 2 be the sub-family composed of all elements which
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induce the representations of the group K,. We identify the element
of ©' with the equivalence class of irreducible representations of
the group K,.

Since K, is compact, (8:2 (S(J)‘” and so, from the theory of the

e’
Kronecker product of representations, we can easily show that

UG)=x U(G)(d) where S denotes the direct sum.

Léitegofo be the identity representation and put U(®)(d)=U®),
then U°(®) is the subalgebra of U(®) of all elements which commute
with U(¥).

If a=a’+Sa;(a’ € UA®), «; € U(®)(d,)), then the mapping «— o is

an idempotent operator from U(®) on U°(®), which satisfies the
following relation.

(i) (2°BY=a’F’, (Ba’Y=p"" for a, B U®)

(ii) (ya)’=(ay)’ for a€ U(®) and «ve U®).

Moreover put [7:..2 U((ﬁ)(&), then U consists of linear combina-
tions of [, a]=qa—ayly e U®), ac UG).>

Now let z,, ..., x, be a base of &, and define as

wr=—x, (=1, ...,n) (—la)=—V—1xF
Then this =-operation is uniquely extended to a conjugate linear
anti-automorphism on U(®), which we shall call the adjoint operation
on U®). If a*=a, we call a self-adjoint.

If a€ U)(d) and the representation of f, induced on ad (U(f))a
is irreducible, then we have (g,a%¢; )= (akaek_l)*—(Zm (k)a)* =
> mi(k)ar. Hence a* belongs to U(S)(d*), where d* is the contra-
éradient representation of d, therefore we have (a*)’=(a’)*.

Put P={B|B=3" Aaifa; 4,=0, a,€ U(®)}, and call the elements of
P to be positive. Llet a=d’+>)a;, then a*a=da*a’+3>] afa’ +>] a*a;
+>) ata; If d;=d;, d¥xd;can not contain the identqity représenta-

tion, therefore

(a*a)’=a*a’ +E (afa;).
Since (the general form of «; is) a; —2 2uBoa (0, q=1,2, ...dim (d,))
where i, are complex numbers and ekque,c 1= 2 Myl (K)Byr (r 1,2, .
dim (d, )), we can easﬂy show that

Hence (ai a@)" and so (a*a)’ belongs to P. Therefore we have
the following proposition.

Proposition 1. (a*)’=(a")* and P is invariant under the O-opera-
tion.
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Definition 1. A linear functional ¢ on U(®) is called to be f,-
tmvartant if it satisfies the following:
p(ya)y=g(ay) for a€UG) and v e U).
Definition 2. A linear functional ¢ on U(®) is called to be posi-
tive if it satisfies the following:
p(@)=0 for aecP.

Definition 3. A linear subspace V of U(®) is called to be f,
tnvariant if

a€ Vmeans [z, a] € V for xzef,.

Proposition 1 means that in order that a f-invariant linear
functional ¢ is positive, it is necessary and sufficient that ¢(a)=0
for a e P NU(G).

Now let M, be a left ideal of U°(®) and put M= {a|(Ba) e M,, a€
U(®) and all Be U(S)}, then A is a f-invariant left ideal of U(®).
We obtain the following proposition.

Proposition 2. If N 4s a f-invariant left ideal such that NN
U (®)=M,, then NRTM.

Proof. As M is frinvariant, R=31N(d). If aeR and aeM,

there exists an element B( e U(G)) sugﬁQ that (Ba)’€M,. However
(Bz)’ € N. This contradicts the assumption.

In particular, if f=6, then U°(f) is the center of U(¥), and
any two-sided ideal of U(f) is f-invariant. Moreover in this case
if M, is an ideal of U°(f), M is also an ideal of U(¥), so that if
M, is a maximal ideal of U°(f), M is maximal. Therefore we have
the following proposition, which is to be valid for any semi-simple
Lie algebra.

Proposition 3. If M is a maximal ideal of UE), then MO U ()
is a maximal ideal of U°(Y) and the mapping M—MMN U(Y) is the
one-to-one correspondence between the maximal ideals of U(t) and
the maximal ideals of U°(E).

Now let &, and G, be the real Lie ring at the beginning and
its adjoint group and suppose that &, is semi-simple. Now let
{m, V} be an irreducible representation of &, (and so U(®)) on a
not necessarily finite-dimensional vector space over the complex
field, and assume that

V:d%z V(d) and dim Vid)<e for all de Q.

We shall call such an irreducible representation quasi-simple as
in Harish-Chandra.” Since the above sum 3>} is a direct sum,
we can congider the idempotent operator E{(d) from V on V(d) and
the operator E(d)m(a)E(d) on V(d) (x € U(®)). Since {r, V} is ir-
reducible, {E(d)mr(a)E(d)|a € U(®)} forms an irreducible family® of
operators on V(d).
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Lemma 1. For arbitrary o, 8€ U®), there exists a y( € U®))
such that E(d)m(v)E(d)m(B8)E(d)=E{(d)m(v)E(d).

Proof. Since (8)V(d) (é V(d;) where d; depends on 8 and d,
i=1

there exists, by the generalized Burnside’s theorem, a &€ U(f)
satisfying E(d)m(a)E(d)=m(8)=(B)E(d), so that we have E(d)r(a)E(d)
(8)E(d)=E(d)m(a88)E(d).

The above lemma means that {E(d)mw(a)E(d)|a e U(G)} is the full
operators on V(d). Moreover (v)E(d)m(a)E(d)— E(d)m(a)E(d)m(y)=
Ed)m([v, a])EXd)(v € U(¥), a € U(®)). Hence if E(d)m(a)E(d) commutes

with =(v), then E(d)7([v, «])E(d)=0 and so E(d)vr(;‘il,-['yf}j, -

(v],a])==0(v{ € U(t) and 2; complex numbers). Let a=a°+iZ;ai, then,
by the generalized Burnside’s theorem, «(i=1, ..., m) have the form
S 4l [V oo [v ad]l.  So if E(d)mr(a)E(d) commutes with
7(v), then E(d)mw(a)E(d)=FE(d)r(a’)E(d). Put A=UE)U(®). The cor-
respondence u( € A)—E(d)w(u)E(d) is a representation of the algebra
A on V(d), which we shall denote by {m,;, V(d)}.
From the above consideration we can conclude the following
theorem.
Theorem 1. The representation {mq, V(d)} of U induced by a
quast-simple trreducible representation of U(®) is irreducible.
Remark. The above result has been shown by R. Godement®
in the case of semi-simple Lie groups with some additional restric-
tions. The above theorem implies that this restriction is un-
necessary.
Next we shall define:
M= (aln(@V(d)=0,  ae UUG)},
M4 = {a](Ba)’ € M, ae UG) and all Be U@B)},
and
W= (alr(@) V(d)=0, a€ UG)],
for some d,( € 2) such that V{(d,)=(0).
My is a two-sided maximal ideal of U’(®), and M and M1 are f,-
invariant left ideals of U(®).
Theorem 2. Mu=M",
Proof. M“NUY(G)=Mi+ and so M*CM*, from Proposition 2.
If ae W%, =(a)E(d)0 and by the irreducibility of {=, V} there
exists an element (€ U(®)) such that E(d,)w(v)mw(a)E(d,)3-0. More-
over from the irreducibility of {m., V(d,)} there exists a & € U such
that  S,(m(8)E(d)m(va) B dy) = Sy(Bd)m(Sya) B(d))0.  Put (@)=
S,(E(d)m(a)E(d,)) for ae€ U®), then ¢i(a)=¢7(a’). Therefore we
have @7 (8va)=g7((8v2)’)30, so that = ((8va)’)E(d,)=0, which means
(Sya) €My and so a €M%, This completes the proof.
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Let e; (=1, 2, ..., n) be a base of V(d,) and put M, = {a|n(a)e;=
0, ae U®)}, then M, (¢=1,2, ...,7n) are maximal left ideals of
U(8). If we denote =, (1=1, 2, ..., ») the canonical representations
of U(®) on U(G)/M,,, they are equivalent to .

We shall consider the representation o =2€\—) m on V'=
Z(—B U(B)M,;, then =(a)V(d,)=0 (a € U(®)), if and only if #'(a)e=0
for the vector e=(ey, ..., e,) € V.

Moreover by the irreducibility of {m., V(d)}, we can easily
show the following proposition.

Proposition 4. The canonical representation of U(®) on U(G)/ M4
18 equivalent to ='.

Remark. We notice that this proposition implies the following
Theorem of Harish-Chandra:® In order that two quasi-simple
irreducible representations {=;, V;} and {m, V,} of U(®) are equiv-
alent, it is necessary and sufficient that @i e)=@72(e) for all
a€ U(®) and for some d € 2 such that V(d)#(O)

As a consequence of the above proposition, we see that the
representation {7,, V'(d)} of A on V’(d) is equivalent to Z(‘Bvrm
If we denote the representation of U°(®) on V(d) by ([ V(d)
then U°(Y)CUS), so that if d=-d,, {7, V(d)} is not equivalent to
{map V(d,)}, by the Proposition 8. This means that if M is an
invariant subspace of V’ under «'(U°(®)), M —2 MNOV'(d).

On the other hand, since M™% is f-mvarlant ‘mdz—zwtdl(d)“)

for the adjoint representation, so that U((Si)/m"l—-z U((Si)(d)/‘))t (d)
=2] (U@®)M*)(d) for the representation of U(¥t) mduced by the

aéje(;;nt representation, on the factor space U(G)/M%, which we shall
call the adjoint representation on U()/M™,

If (@)™ (€ (U((S)/?R”l)(&l')) and u( € U(®)), (ua)me and (au)me,
belongs to (U(G)/M%)(d). Hence (U(G)M%)(d) is invariant under
(U°(®)) and we have

(UG)M)(d)= 2 (UG d) NUG)/MA(d). . .(A).
It turns out that dim (U(@)/‘)Rdl)(d)< o and that inorder that a(e U(S)
(d)) belongs to M*, it is sufficient that (B*a)’ € M for all B e UGHd).
Henceforward we shall assume that M is a self-adjoint ideal of
U(®); ie. if ae M, a* e Mir. Let (a)mau (1=1, 2, ..., r) be a base
of (U®)M4)(d,). Then in order that a( e U(G)(d,)) belongs to M,
it is sufficient that (afa) (2=1, 2, ..., r) belong to M&.

From the preceding considerations on {77, V’(d)} and on (A),
we can obtain the following
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Theorem 3. If M; (XUS)) for some d, e 2 s self-adjoint,
all MY’s are self-adjoint.

Corollary. If @I (0) for some d,€ 2 s self-adjoint,”™ all
p3’s are self-adjont.

Next we shall state some lemmas for the following Theorem 4.
As M} is self-adjoint by our assumption, MH is a self-adjoint
maximal ideal of U’(f). Therefore we can easily show that d, is
unitary,'® so that, by Theorem 8, all d’s which occur in = are
unitary.

Let the elements of £, which oceur in =, be d, d,, ds, ...
and let %!, (t<m, ¢, n—l 2,...) be the elements of U’(f)" such

that «'(u.)=FE'(d;)) on Z‘, V'(d;) and let v (j(n, 1, m=1,2,...) be
the elements of U°(f) such that «/(v)=>)='(u}). Since all d; are

unitary, we ecan assume that all %), and ’vz, are self-adjoint. More-
over let the elements of &', which occur in the adjoint representa-

tion on U(G)M%, be dy, dy,.... It follows, by (A), that for an
arbitrarily fixed number m, there exists a number ¢(m) and a v}
such that

3 V(d) € (UOENE,)  and
@I (UGN =32 V(o)

in other words:
V)= (Bmlb=vi, 1 € S5 UG-

If o is an arbitrarily fixed element of UB) and »' (=n) is a
sufficiently large number, we have the following relations:

(Z‘ E"(d)) =’ (a)(E E'(d.)=m"'(vi)m'(a) on iZ: Vi(dy),
and
(S B3 BNd) = @)m'(@*) on 3 V'(d).
On the other hand, we have
' W) (@)’ () == W) (@)’ (v5))
=/ (V) avy)=='(Via) on Z,V’(d)
From the above facts with some additional considerations, we
obtain the following Lemma.
. Lemma 2. If (31 Bd)m(@)(3] Bd)=0( € U®), (3 Bd)m(a")
(gl E(d,))=0.
By the analogous method with the Lemma 1, it can be shown
that {(f;: E(di))w(a)(?]: E(d)lac U®)) are the full operators on
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2 Vid,). Furthermore, from Lemma 2, it is easily shown that the
mapping (Z Ed; ))'rr(a)(Z Ed; ))->(24 Ed; ))vr(a*)(Z E(d)) is a con-
jugate hnear antl-automorphlsm Therefore by the well-known
theorem on the automorphlsms of simple algebras,“” we obtain that

(Z Ed; ))vr(a*)(Z E(d.))=Hyu{ (Z Ed, ))w(a)(E E(d))}°H;', where H,
denotes a llnear operator on 2 Vid,) and A° donotes the adjoint

operator of A in the sense of ﬁmte dimensional vector space.

Proposition 5. H, is a self-adjoint operator for all m.

Finally we assume that {w,, V(d,)} is unitary.'” Then the
representation {m., V(d,)} of U is also unitary,’ so that we have,
by Lemma 2, (E(d,)m(a)E(d,))’=E(d,)n(a*)E(d,) for all ae U(®) and
so H,=1.

From some more considerations together with Proposition 5, it
turns out that if dim (d,)=1, all H, are positive self-adjoint opera-
tors. By this fact, we can easily show that ¢Z(a*a)=Sp(E(d)mr(a*a)
E(d))=0, for all ae U(®) and all de€ L.

Now we conclude the following

Theorem 4. Suppose dim (d)=1. Then in order that the func-
tional @7 is positive, it is necessary and sufficient that o7 (u*u)=0 for
all uwe U(B). Moreover if o7 (30) is positive, all p37’s are positive.

Remark 1. It seems to be almost certain that the restrietion
dim (d,)=1 in the above theorem is unnecessary.

In another paper, we shall discuss the problem with the com-
plete proof of Theorem 4.

Remark 2. In the general semi-simple Lie group G, we can
show, by a slight modification of Harish-Chandra’s Theorem®” that
in order that a quasi-simple irreducible representation {w, $} of G
is infinitesimally equivalent to a unitary irreducible representation,
it is necessary and sufficient that some spherical fuetion ¢7 (3=0)
is positive in our sense. Therefore the above theorem gives a
sufficient condition in order that {s, $} is infinitesimally unitary.
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