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65. On Infinite.dimensional Representations o Semi.
simple Lie Algebras and Some Functionals
on the Universal Enveloping Algebras. I

By Shbichir6 SAKAI
(Comm. by K. KUNUGI, M.J.A., April 12, 1954)

During the past few years, Harish-Chandra*))) has obtained the
very important results on the representations of semi-simple Lie
groups on Banach spaces, and R. Godement’) has obtained elementary
and elegant proofs for some of them with many new results. Let
G be a connected semi-simple Lie group, (R)0 the Lie algebra of G,
and Go the adjoint group of (R)o. Then it is well-known that Go has
the orm Ko.So, where Ko is a maximal compact subgroup and So
a solvable subgroup and Ko So=(e). Let K be the inverse image
of K0 in G, S some solvable subgroup of G isomorphic to So with
G--K.S. In his theory of spherical functions, Godement essentially
assumed the compactness of K, and has shown that there is a one-
to-one correspondence between irreducible unitary representations
of G and finite dimensional irreducible unitary representations of his
algebra L(d) (unpublished); this result is more useful or the
determination of all irreducible unitary representations of G than the
corresponding result due to Chandra. However, as K is in general

the direct product of a compact subgroup and a vector subgroup, it
is desirable to find a way which makes the Godement’s restriction
stated above unnecessary. The object of this paper is to extend
the considerations of the author to the semi-simple Lie algebra and
to make it adequate for this requirement.

Let (SJo be a real Lie ring, o be a subring of (o and Go be the
adjoint group) of (o, Ko be the analytic subgroup) of Go corre-
sponding to Ko.) We shall assume that Ko is compact. Let ( and f
be the complexification of (o and o respectively, and U(() and U()
be the universal enveloping algebra of ( and f respectively, then
U() can be considered as a subalgebra of U((s).

Since the elements of Go are automorphisms of (o, they are
uniquely extended to automorphisms of U((), which we shall denote
by a--> a_l=ad (x)a(x e Go), and call the correspondence x --> ad (x)
the adjoint representation of Go.)

Let 9 be all equivalence classess of finite-dimensional irreducible
representations of the ring o, then _o can be considered to be all
equivalence classes of finite-dimensional irreducible representations
of U(). Let 2 be the sub-family composed of all elements which
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induce the representations of the group K0. We identify the element
of 2 with the equivalence class of irreducible representations of
the group K0.

Since K0 is compact, (--_ ((d)s) and so, from the theory of the

Kronecker product of representations, we can easily show that

U($): U()(d) where denotes the direct sum.
d

Let do be the identity representation and put ()(do)-U(9),
then U is the subalgebra of U of all elements which commute
with U().

If a=a +a (a U([), a U(()(d)), then the mapping a a is
an idempoten operator from () on U((9), which satisfies he
following relation.

(i) (aB)--a, (Ba)--Ba for a, B e U()
(ii) (Ta)-(aT) for a e U() and 7e U().
Moreover put U= U(()(d), then U eonsists of linear eombina-

tions of 7, a-Ta-aT(7 U(), U()).)

Now let x,..., x, be a base of o, and define as

x--x,: (i-1, n) (-1 x)*---1 x$.

Then this .-operation is uniquely extended to a conjugate linear
anti-automorphism on U), which we shall call the adjoint operation
on U(). I2 a*--a, We call a self-adjoint.

If a U()(d) and the representation of o induced on ad U())a
is irreducible, hen we have

mk)a.* Hence a* belongs to U)(d*), where d* is the contra-

gradient representation of d, therefore we have
Put P-[[-aTa 0,

P o be positive. Let a=a+ a, then a*a=a*a + aa + a*a

+aa. If dd, d d can not contain the identity representa-

tion, therefore
(.)o_o.o +

Since (he general form o a, is) a-- ,,, (p, q=.l, 2,...dim (d))
dwhere a,, are complex numbers and eB,e_= m() (r: 1, 2,

dim (d)), we can easily show that

(a:a)- {a,B/dm (g) {a,Br/dm (d) }.
qr p p

Hence (aa) and so (a*) belongs to P. Therefore we have
the following proposition.

Proposition 1. (a*)- (ao) . and P is invariant under the O-opera-
tion.
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Definition 1. A linear functional q on U([S) is called to be o-
invariant if i, satisfies ,the following"

9(/a)=qa(ag/) for a U(() and 7 U().
Definition 2. A linear functional cp on U(() is called ,o be posi-

,ive if it saisfies the following"

9(a)>0 for aP.
Definition 3. A linear subspaee V of U((Sj) is called to be f0"

invariant if
aeVmeans [x,a]eV for Xo.

Proposition 1 means that in order that a 0-invariant linear
functional a/ is positive, it is necessary and sufficient that
for a e P ( U().

Now let 0 be a left ideal of U(() and put Yf--{al(Ba)e o,
U(() and all B e U(()}, then I is a 0-invariant left ideal of U(().
We obtain the following proposition.

Proposition 2. If is a o-invariant left ideal such that
U(()=0, then .

Proof. As is 0-invariant, -(d). If ae T and a

Chere exists an element /9( e U(()) such that (Ba).o. However
(/9) e . This contradicts the assumption.

In particular, if o--(SJo, then U() is the center of U(), and
any two-sided ideal of U() is 0-invariant. Moreover in this case
if 90 is an ideal of U(), 2 is also an ideal of U(), so that if
90 is a maximal ideal of U(), ?X is maximal. Therefore we have
the following proposition, which is to be valid for any semi-simple
Lie algebra.

lroposition 3. If 9X is a maximal ideal of U(), then ( U()
is a maximal ideal of U() and the mapping 9X( U(f) is the
one-to-one correspondence between the maximal ideals of U() and
the maximal ideals of U( ).

Now let (o and Go be the real Lie ring at the beginning and
its adjoint group and suppose that (o is semi-simple. Now let
[r, V} be an irreducible representation of (0 (and so U(()) on a
not necessarily finite-dimensional vector space over the complex
field, and assume that

V=,V(d) and dimV(d)< for all d

We shall call such an irreducible representation quasi-simple as
in Harish-Chandra.) Since the above sum . is a direct sum,
we can consider the idempotent operator E(d) from V on V(d) and
the operator E(d)r(a)E(d) on V(d) (a U(()). Since [r, V} is ir-
reducible, [E(d)r(a)E(d)la e U(()} forms an irreducible family of
operators on V(d).
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Lemma 1. For arbitrary a, B U(), there exists a ( U())
such that E(d)r(7)E(d)r(B)E(d) E(d)r(7)E(d).

Proof. Since r(B)V(d)( V(d) where d depends on B and d,

there exists, by the generalized Burnside’s theorem, a e U()
satisfying E(d)(a)E(d)=(8)(Z)E(d), so that we have E(d)(a)E(d)
v(Z)E(d) E(d)(aB)E(d).

The above lemma means that {E(d)(a)E(d)]a e U()} is the ull
operators on V(d). Moreover (7)E(d)(a)E(d)-E(d)(a)E(d)(7)=
E(g)([7, a)E(g)(7 U(), a U()). Hence if E(d)(a)E(d) commutes

p

with (), then E(d)([% a])E(d)=O and so E(d)([7.,

[7,a)--0(7] e U() and complex numbers). Let a=a+a, then,
i=1

by the generalized Burnside’s theorem, a(i=l, m) have the form
[7,, [7, a]]. So if E(d)(a)E(d) commutes withE%,

(), then E(g).(a)E(g)=E(d)(a)E(d). Put -U()U(). The cor-
respondence u( e )E(d)(u)E(d) is a representation of the algebra
I on V(d), which we shall denote by [, V(d)}.

From the above consideration we can conclude the following
theorem.

Theorem 1. The representation {, V(d)} of induced by a
quasi-simple irreducible representation of U() is irreducible.

Remark. The above result has been shown by R. Godement)

in the case of semi-simple Lie groups with some additional restric-
tions. The above theorem implies that this restriction is un-
necessary.

Next we shall define:
[[,()V(d)= 0, e o()},= {a[(Ba) , a U() and all B U()},

and

’’-- f,i,-;,-() V(d)--O, (() },
for some d( e/2) such that V(d)-(O).

93o, is a two-sided maximal ideal o U(), and , and are o-
invariant left ideals of U().

Theorem 2. a=
Proof. ’U(()= and so ’c, from Proposition 2.

If a e"z, (a)E(d)O and by the irreducibility of [, V} there
exists an element 7( e U(@)) such that E(d)(7)w(a)E(d)O. More-
over from the irreducibility of [ffa, V(d)} there exists a 8 such
that S(()E(d)w(Ta)E(d))-S(E(d)(Ta)E(d))O. Put
S(E(d)(a)E(g)) for a e U(@), then ,()-a(a). Therefore we
have ,( )=2((a))0, so that ((a))E(d)O, which means
(Ta) and so a e . This completes the proof.
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Let e (i-1, 2, ..., n) be a base of V(d) and put
0, a e U(()}, then (i-1, 2, n) are maximal left ideals of
U((). If we denote v,,: (i-1, 2, ..., n) the canonical representations
of U() on U()/, they are equivalent to .

We shall consider the representation -- on
i=1

U()/, then =(a)V(d)-O (a e U()), if and only if =’(a)e=0
i=l

for the vector e-(e, ..., e.)e V’.
Moreover by the irreducibility of {=%, V(d)}, we can easily

show the following proposition.
Proposition 4. The canonical representation of U() on U(()/

is equivalent to ’.
Remark. We notice that this proposition implies the following

Theorem of Harish-Chandra: In order that two quasi-simple
irreducible representations {=, V,} and {, V} of U() are equiv-
alent it is necessary and sufficient that (a) -(a) for all
a e U() and for some d e 9 such that V(d)(O).

As a consequence of the above proposition, we see that the
representation {, V’(d)} of I on V’(d) is equivalent to ..

i=1

If we denote the representation of U()on V(d)by {, V(d)},
then U()CU(), so that if dd,, {, V(d)} is not equivalent to
{,, V(d)}, by the Proposition 3. This means that if M is an
invariant subspace of V’ under =’(U()), M=M V’(d).

On the other hand, since " is 0-invariant, --9)(d)
or the adjont representation, so that U()/ U(()(d)/(d)

dfi

=(U()/)(d) for the representation of U()induced, by the

adjoint representation, on the factor space U()/, which we shall
call the adjoint representation on U()/.

If (a)> ( e (U()/)(d)) and u( e U()), (ua) and (au)
belongs to (U()/)(d). Hence (U()/)(d) is invariant under
=’(U(()) and we have

(A).
It turns out that dim (U()/)(d)< and that in order that a( e U()
(d) belongs to, it is sufficient that (B’a) for all Z e-U(().
Henceforward we shall assume that is a self-adjoint ideal of
U(); i.e. if a e, a*e. Let (a) (i=1, 2,..., r)be a base
of (U()/)(d). Then in order that a( e U()(d)) belongs to ,
it is sufficient that (aa) (i=1, 2, ..., r) belong to .

From the preceding considerations on {, V’(d)} and on (A),
we can obtain the following
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Theorem 3. If (U()) for some d is self-adjoint,
all ’s are self-adjoint.

Corollary. If ,, (0) for some d is self-adjoint,) all
s are self-adjont.
Next we shall state some lemmas for the following Theorem 4.

As is self-adjoint by our assumption, , is a self-adjoint
maximal ideal of U(). Therefore we can easily show that d is
unitary,) so that, by Theorem 3, all d’s which occur in are
unitary.

Let the elements of 9, which occur in v, be dl, d, d,...
and let u (in, i, n=l, 2, ...) be the elements of U(i) such

’ V’(d,) and let v (jn; i,n 1,2,...) bethat (u,,)=E’(&) on

he elements of U() such that ’(v0 ’(u,). Since all d, are

unitary, we can assume that all u, and v, are self-adjoint. More-
over let the elements of ’, which occur in the adjoint representa-

tion on U()/, be d0, d, It follows, by (A), that for an
arbitrarily fixed number m, there exists a number t(m) and a v7
such that

t(m)

V’(d.) (U(()/O(d) and
i ql

t(m)

q=l =I

ote o"
t(m)

=1

If a is an arbitrarily fixed element of U() and n’ (n) is a
sufficiently large number, we have the following relations"

( E’(d,)) ’ (a)( E’(d))- "vT,’(a) on V’(d,:)
=I i:I =I

and

rk’v,, on V’(d).
’=i i:i =I

On the other hand, we have

From the above facts with some additional considerations, we
obtain the following Lemma.

Lemma 2. If ( E(d))(a)( E(d))-O(a U()), ( E(g.))(a*)
=I =I =1

E(d.,))-o.
By the analogous method with the Lemma 1, it can be shown

that {( E(d))(a)( E(d))]a U()} are the full operators on
=1
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V(d). Furthermore, from Lemma 2, it is easily shown that the
=-I

mapping (V], E(d))r(a)( E(d))(}- E(d))r(a*)(, E(d.)) is a con-
=I =I =I i=I

jugate linear anti-automorphism. Therefore by the well-known
theorem on the automorphisms of simple algebras,) we obtain that

H, where H( E(g,i))r(a*)( E(di)) Y{( E(d))r(a)(_ E(d))}
/=1 i=1 /=1 i=1

denotes a linear operator on V(d) and A donotes the adjoint
i=1

operator of A in the sense of finite dimensional vector space.
Proposition 5. H is a self-adjoint operator for all m.
Finally we assume that {,, V(d)} is unitary.) Then the

representation {, V(d)} of l is also unitary,) so that we have,
by Lemma 2, (E(d)r(a)E(g))=E(d)=(a*)E(d) for all a e U(() and
so

From some more considerations together with Proposition 5, it
turns out that if dim (d)-l, all H are positive self-adjoint opera-
tors. By this fact, we can easily show that p(a*a) Sp(E(d)r(a*a)
E(d))>__O, for all a e U(() and all d e 2.

Now we conclude the following
Theorem 4. Suppose dim (d,)=l. Then in order that the func-

tional is positive, i is necessary and sucient that o(u u)>0 for
all u e U(@). Moreover if q(=O) is positive, all o2’s are positive.

Remark 1. It seems to be almost certain that the restriction
dim (d)-I in the above theorem is unnecessary.

In another paper, we shall discuss the problem with the com-
plete proof of Theorem 4.

Remark 2. In the general semi-simple Lie group G, we can
Theorem))show by a slight modification of Harish-Chandra’s that

in order that a quasi-simple irreducible representation {r, (C)} of G
is infinitesimally equivalent to a unitary irreducible representation,
it is necessary and sufficient that some spherical ruction o2 (/=0)
is positive in our sense. Therefore the above theorem gives a
sufficient condition in order that {r, (C)} is infinitesimally unitary.
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