65. On Infinite-dimensional Representations of Semisimple Lie Algebras and Some Functionals on the Universal Enveloping Algebras. I

By Shôichirô Sakai
(Comm. by K. Kunugi, m.J.A., April 12, 1954)

During the past few years, Harish-Chandra ${ }^{45568}$ has obtained the very important results on the representations of semi-simple Lie groups on Banach spaces, and R. Godement ${ }^{3}$ h has obtained elementary and elegant proofs for some of them with many new results. Let G be a connected semi-simple Lie group, \mathfrak{G}_{0} the Lie algebra of G, and G_{0} the adjoint group of \mathfrak{G}_{0}. Then it is well-known that G_{0} has the form $K_{0} \cdot S_{0}$, where K_{0} is a maximal compact subgroup and S_{0} a solvable subgroup and $K_{0} \cap S_{0}=(e)$. Let K be the inverse image of K_{0} in G, S some solvable subgroup of G isomorphic to S_{0} with $G=K \cdot S$. In his theory of spherical functions, Godement essentially assumed the compactness of K, and has shown that there is a one-to-one correspondence between irreducible unitary representations of G and finite dimensional irreducible unitary representations of his algebra $L^{o}\left(d^{d}\right)$ (unpublished); this result is more useful for the determination of all irreducible unitary representations of G than the corresponding result due to Chandra. However, as K is in general the direct product of a compact subgroup and a vector subgroup, it is desirable to find a way which makes the Godement's restriction stated above unnecessary. The object of this paper is to extend the considerations of the author to the semi-simple Lie algebra and to make it adequate for this requirement.

Let \mathscr{S}_{0} be a real Lie ring, \mathfrak{F}_{0} be a subring of \mathscr{S}_{0} and G_{0} be the adjoint group ${ }^{1)}$ of $5_{0}, K_{0}$ be the analytic subgroup ${ }^{1)}$ of G_{0} corresponding to $K_{0}{ }^{177}$ We shall assume that K_{0} is compact. Let \mathscr{S} and \mathfrak{H} be the complexification of ξ_{0} and \mathfrak{f}_{0} respectively, and $U(\mathbb{B})$ and $U\left({ }^{(}\right)$ be the universal enveloping algebra of $(\mathscr{S}$ and \mathfrak{F} respectively, then $U\left(\mathcal{F}^{(}\right)$can be considered as a subalgebra of $U(\mathbb{F})$.

Since the elements of G_{0} are automorphisms of \mathscr{F}_{0}, they are uniquely extended to automorphisms of $U(\mathbb{S})$, which we shall denote by $\alpha \rightarrow \varepsilon_{x} \alpha \varepsilon_{x-1}=\operatorname{ad}(x) \alpha\left(x \in G_{0}\right)$, and call the correspondence $x \rightarrow \operatorname{ad}(x)$ the adjoint representation of $G_{0}{ }^{10)}$

Let Ω be all equivalence classess of finite-dimensional irreducible representations of the ring \mathfrak{f}_{0}, then Ω can be considered to be all equivalence classes of finite-dimensional irreducible representations of $U\left({ }^{(}\right)$. Let Ω^{\prime} be the sub-family composed of all elements which
induce the representations of the group K_{0}. We identify the element of Ω^{\prime} with the equivalence class of irreducible representations of the group K_{0}.

Since K_{0} is compact, $\mathscr{G}=\sum_{\tilde{d} \in \Omega^{\prime}}\left(\mathscr{S}(\tilde{d})^{s)}\right.$ and so, from the theory of the Kronecker product of representations, we can easily show that

Let ${ }^{a_{2}{ }^{\prime}} \tilde{d}_{0}$ be the identity representation and put $U((\xi))\left(\tilde{d}_{0}\right)=U^{o}((5)$, then $U^{o}(\mathscr{F})$ is the subalgebra of $U(\mathbb{F})$ of all elements which commute with $U(\mathfrak{f})$.

If $\alpha=\alpha^{o}+\sum \alpha_{i}\left(\alpha^{o} \in U^{o}(\mathscr{S}), \alpha_{i} \in U\left((\mathbb{S})\left(\tilde{d_{i}}\right)\right)\right.$, then the mapping $\alpha \rightarrow \alpha^{o}$ is an idempotent operator from $U(\sqrt{5})$ on $U^{o}(\sqrt[5]{5})$, which satisfies the following relation.
(i) $\left(\alpha^{o} \beta\right)^{o}=\alpha^{o} \beta^{o},\left(\beta \alpha^{o}\right)^{o}=\beta^{o} \alpha^{o}$ for $\alpha, \beta \in U((\mathbb{S})$
(ii) $(\gamma \alpha)^{\circ}=(\alpha \gamma)^{\circ} \quad$ for $\quad \alpha \in U(\mathbb{F})$ and $\gamma \in U(\mathfrak{f})$.

Moreover put $\widetilde{U}=\sum_{\tilde{d} \neq d_{0}} U(\mathbb{S})(\tilde{d})$, then \tilde{U} consists of linear combinations of $\left.[\gamma, \alpha]=\gamma \alpha-\alpha \gamma(\gamma \in U(\mathfrak{f}), \alpha \in U((5))) .{ }^{2}\right)$

Now let x_{1}, \ldots, x_{n} be a base of \mathscr{S}_{0}, and define as

$$
x_{1}^{*}=-x_{i}(i=1, \ldots, n) \quad\left(\sqrt{-1} x_{i}\right)^{*}=-\sqrt{-1} x_{i}^{*}
$$

Then this *-operation is uniquely extended to a conjugate linear anti-automorphism on $U(\mathscr{S})$, which we shall call the adjoint operation on $U(\mathbb{F})$. If $\alpha^{*}=\alpha$, we call α self-adjoint.

If $\alpha \in U(\mathbb{F})(d)$ and the representation of \mathfrak{f}_{0} induced on $\operatorname{ad}(U(\mathfrak{f})) \alpha$ is irreducible, then we have $\left(\varepsilon_{k} \alpha^{*} \varepsilon_{k-1}\right)=\left(\varepsilon_{k} \alpha \varepsilon_{k-1}\right)^{*}=\left(\sum_{j} m_{j i}^{d i}(k) \alpha_{j}\right)^{*}=$ $\sum_{j} \overline{m_{j i}^{d}(k) \alpha_{j}^{*}}$. Hence α^{*} belongs to $U(\mathscr{S})\left(d^{*}\right)$, where d^{*} is the contragradient representation of d, therefore we have $\left(\alpha^{*}\right)^{o}=\left(\alpha^{o}\right)^{*}$.

Put $P=\left\{\beta \mid \beta=\sum_{l} \lambda_{l} \alpha_{l}^{*} \alpha_{l} \lambda_{l} \geqq 0, \alpha_{l} \in U(\mathbb{G})\right\}$, and call the elements of P to be positive. Let $\alpha=\alpha^{o}+\sum \alpha_{i}$, then $\alpha^{*} \alpha=\alpha^{o *} \alpha^{o}+\sum_{i} \alpha_{i}^{*} \alpha^{o}+\sum_{i} \alpha^{o *} \alpha_{i}$ $+\sum_{i, j} \alpha_{i}^{*} \alpha_{j}$. If $d_{i} \neq d_{j}, d_{i}^{*} \times d_{j}$ can not contain the identity representation, therefore

$$
\left(\alpha^{*} \alpha\right)^{o}=\alpha^{o *} \alpha^{o}+\sum_{i}\left(\alpha_{i}^{*} \alpha_{i}\right)^{o} .
$$

Since (the general form of α_{i} is) $\alpha_{i}=\sum_{p, q} \lambda_{p q}^{i} \beta_{p q},\left(p, q=1,2, \ldots \operatorname{dim}\left(d_{i}\right)\right)$ where $\lambda_{p q}^{i}$ are complex numbers and $\varepsilon_{k} \beta_{p q} \varepsilon_{k-1}=\sum_{r} m_{r g}^{d_{i}}(k) \beta_{p r}(r=1,2, \ldots$ $\left.\operatorname{dim}\left(d_{i}\right)\right)$, we can easily show that

$$
\left(\alpha_{i}^{*} \alpha_{i}\right)^{o}=\sum_{q, r}\left\{\sum_{p} \bar{\lambda}_{p p}^{i} \beta_{p r}^{*} / V \overline{\left.\operatorname{dim}\left(d_{i}\right)\right\}}\left\{\sum_{p} \lambda_{p p}^{i} \beta_{p r} / V \overline{\operatorname{dim}\left(d_{i}\right)}\right\} .\right.
$$

Hence $\left(\alpha_{i}^{*} \alpha_{i}\right)^{o}$ and so $\left(\alpha^{*} \alpha\right)^{o}$ belongs to P. Therefore we have the following proposition.

Proposition 1. $\left(\alpha^{*}\right)^{o}=\left(\alpha^{o}\right)^{*}$ and P is invariant under the O-operation.

Definition 1. A linear functional φ on $U(\mathbb{S})$ is called to be $\mathfrak{f}_{0}-$ invariant if it satisfies the following:

$$
\varphi(\gamma \alpha)=\varphi(\alpha \gamma) \quad \text { for } \quad \alpha \in U(\mathscr{F}) \text { and } \gamma \in U(\hat{f}) .
$$

Definition 2. A linear functional φ on $U(\mathscr{S})$ is called to be positive if it satisfies the following:

$$
\varphi(\alpha) \geqq 0 \quad \text { for } \quad \alpha \in P .
$$

Definition 3. A linear subspace V of $U\left((5)\right.$ is called to be \mathfrak{K}_{0} invariant if
$\alpha \in V$ means $[x, \alpha] \in V$ for $x \in \mathfrak{f}_{0}$.
Proposition 1 means that in order that a \mathfrak{f}_{0}-invariant linear functional ρ is positive, it is necessary and sufficient that $\varphi(\alpha) \geqq 0$ for $\alpha \in P \cap U^{o}(\mathbb{W})$.

Now let \mathbb{M}_{0} be a left ideal of $U^{o}(\mathscr{S})$ and put $\mathbb{M}_{\mathcal{O}}=\left\{\alpha \mid(\beta \alpha)^{o} \in \mathbb{M}_{0}, \alpha \in\right.$ $U(\mathbb{S})$ and all $\beta \in U(\mathbb{S})\}$, then \mathfrak{Z} is a \mathfrak{F}_{0}-invariant left ideal of $U(\mathbb{G})$. We obtain the following proposition.

Proposition 2. If $\mathfrak{\Re}$ is a \mathfrak{o}_{0}-invariant left ideal such that $\mathfrak{\Re} \cap$ $U^{o}\left(\mathbb{S}^{\prime}\right)=\mathfrak{M}_{0}$, then $\mathfrak{R} \subset \mathfrak{M}$.

Proof. As \mathfrak{M} is \mathfrak{K}_{0}-invariant, $\mathfrak{R}=\sum_{\tilde{d} \in \Omega^{\prime}} \Re(\tilde{d})$. If $\alpha \in \mathfrak{M}$ and $\alpha \in \mathfrak{M}$, there exists an element $\beta(\in U(\mathscr{S}))$ such that $(\beta \alpha)^{\circ} \bar{\epsilon} \mathfrak{M}_{0}$. However $(\beta \alpha)^{\circ} \in \mathfrak{R}$. This contradicts the assumption.

In particular, if $\mathfrak{f}_{0}=\left(\mathscr{S}_{0}\right.$, then $U^{o}(\mathfrak{f})$ is the center of $U(\mathfrak{f})$, and any two-sided ideal of $U(\mathfrak{f})$ is \mathfrak{f}_{0}-invariant. Moreover in this case if \mathfrak{R}_{0} is an ideal of $U^{o}(\mathfrak{f}), \mathfrak{M}$ is also an ideal of $U(\mathfrak{f})$, so that if \mathfrak{M}_{0} is a maximal ideal of $U^{0}(\mathfrak{l}), \mathfrak{M}$ is maximal. Therefore we have the following proposition, which is to be valid for any semi-simple Lie algebra.

Proposition 3. If \mathfrak{M} is a maximal ideal of $U(\mathfrak{f})$, then $\mathfrak{M} \cap U^{o}(\mathfrak{f})$ is a maximal ideal of $U^{o}(\mathfrak{f})$ and the mapping $\mathfrak{M} \rightarrow \mathfrak{M} \cap U^{o}(\mathfrak{f})$ is the one-to-one correspondence between the maximal ideals of $U(\mathfrak{f})$ and the maximal ideals of $U^{o}(\mathfrak{F})$.

Now let \mathscr{S}_{0} and G_{0} be the real Lie ring at the beginning and its adjoint group and suppose that \mathscr{S}_{0} is semi-simple. Now let $\{\pi, V\}$ be an irreducible representation of \mathscr{S}_{0} (and so $U(\mathscr{S})$) on a not necessarily finite-dimensional vector space over the complex field, and assume that

$$
V=\sum_{d \in \Omega} V(d) \text { and } \quad \operatorname{dim} V(d)<\infty \quad \text { for all } \quad d \in \Omega .
$$

We shall call such an irreducible representation quasi-simple as in Harish-Chandra. ${ }^{5)}$ Since the above sum \sum is a direct sum, we can consider the idempotent operator $E(d)$ from V on $V(d)$ and the operator $E(d) \pi(\alpha) E(d)$ on $V(d)(\alpha \in U(\mathscr{S}))$. Since $\{\pi, V\}$ is irreducible, $\left\{E(d) \pi(\alpha) E(d) \mid \alpha \in U((\mathbb{S})\}\right.$ forms an irreducible family ${ }^{9)}$ of operators on $V(d)$.

Lemma 1. For arbitrary $\alpha, \beta \in U(\mathbb{S})$, there exists a $\gamma(\in U(\mathbb{S}))$ such that $E(d) \pi(\gamma) E(d) \pi(\beta) E(d)=E(d) \pi(\gamma) E(d)$.

Proof. Since $\pi(\beta) V(d)\left(\sum_{i=1}^{r} V\left(d_{i}\right)\right.$ where d_{i} depends on β and d, there exists, by the generalized Burnside's theorem, a $\delta \in U(\mathfrak{1})$ satisfying $E(d) \pi(\alpha) E(d)=\pi(\delta) \pi(\beta) E(d)$, so that we have $E(d) \pi(\alpha) E(d)$ $\pi(\beta) E(d)=E(d) \pi(\alpha \delta \beta) E(d)$.

The above lemma means that $\{E(d) \pi(\alpha) E(d) \mid \alpha \in U(ß))\}$ is the full operators on $V(d)$. Moreover $\pi(\gamma) E(d) \pi(\alpha) E(d)-E(d) \pi(\alpha) E(d) \pi(\gamma)=$ $E(d) \pi([\gamma, \alpha]) E(d)(\gamma \in U(\mathfrak{f}), \alpha \in U(\mathfrak{K}))$. Hence if $E(d) \pi(\alpha) E(d)$ commutes with $\pi(\gamma)$, then $E(d) \pi([\gamma, \alpha]) E(d)=0$ and so $E(d) \pi\left(\sum_{j=1}^{p} \lambda_{j}\left[\gamma_{n_{j}}^{j}, \ldots\right.\right.$ $\left.\left[\gamma_{1}^{j}, \alpha\right]\right)=0\left(\gamma_{l}^{j} \in U(\mathfrak{f})\right.$ and λ_{j} complex numbers). Let $\alpha=\alpha^{o}+\sum_{i=1}^{m} \alpha_{i}$, then, by the generalized Burnside's theorem, $\alpha_{i}(i=1, \ldots, m)$ have the form $\sum \lambda_{j i}\left[\gamma_{n j i}^{j},\left[\gamma_{n j i-1}^{j}, \ldots\left[\gamma_{i_{i}}^{j}, \alpha\right]\right]\right.$. So if $E(d) \pi(\alpha) E(d)$ commutes with $\pi(\gamma)$, then $E(d) \pi(\alpha) E(d)=E(d) \pi\left(\alpha^{o}\right) E(d)$. Put $\mathfrak{U}=U(\mathcal{f}) U^{o}(\mathscr{S})$. The correspondence $u(\in \mathfrak{Y}) \rightarrow E(d) \pi(u) E(d)$ is a representation of the algebra \mathfrak{H} on $V(d)$, which we shall denote by $\left\{\bar{\pi}_{d}, V(d)\right\}$.

From the above consideration we can conclude the following theorem.

Theorem 1. The representation $\left\{\bar{\pi}_{a}, V(d)\right\}$ of \mathfrak{H} induced by a quasi-simple irreducible representation of $U(\mathbb{S})$ is irreducible.

Remark. The above result has been shown by R. Godement ${ }^{3)}$ in the case of semi-simple Lie groups with some additional restrictions. The above theorem implies that this restriction is unnecessary.

Next we shall define:

$$
\begin{aligned}
& \mathfrak{M}_{0}^{d_{1}}=\left\{\alpha \mid \pi(\alpha) V\left(d_{1}\right)=0, \quad \alpha \in U^{o}(\mathbb{S})\right\}, \\
& \mathfrak{R}^{d_{1}}=\left\{\alpha \mid(\beta \alpha)^{\circ} \in \mathfrak{M}_{0}^{d_{1}}, \quad \alpha \in U(\mathbb{S}) \quad \text { and all } \beta \in U(\mathbb{S})\right\},
\end{aligned}
$$

and

$$
\mathfrak{R}^{\prime d_{1}}=\left\{\alpha \mid \pi(\alpha) V\left(d_{1}\right)=0, \quad \alpha \in U(\mathscr{S})\right\},
$$

for some $d_{1}(\in \Omega)$ such that $V\left(d_{1}\right) \neq(0)$.
$M_{0}^{d_{1}}$ is a two-sided maximal ideal of $U^{o}(\mathscr{S})$, and $\mathbb{M}^{d_{1}}$ and $\mathfrak{M}^{\prime \prime}{ }_{1}$ are $\mathfrak{f}_{0}-$ invariant left ideals of $U(\mathbb{S})$.

Theorem 2. $\mathfrak{M}^{d_{1}}=\mathfrak{M}^{d_{1}}$.
Proof. $\quad \mathfrak{M}^{\prime d_{1}} \cap U^{o}\left(\mathscr{S}^{\prime}\right)=\mathfrak{M}_{0}^{d_{1}}$ and so $\mathfrak{M}^{\prime \alpha_{1}} \subset \mathfrak{M}^{d_{1}}$, from Proposition 2. If $\alpha \in \mathfrak{M}^{\prime A_{1}}, \pi(\alpha) E\left(d_{1}\right) \neq 0$ and by the irreducibility of $\{\pi, V\}$ there exists an element $\gamma(\in U(\mathscr{S}))$ such that $E\left(d_{1}\right) \pi(\gamma) \pi(\alpha) E\left(d_{1}\right) \neq 0$. Moreover from the irreducibility of $\left\{\bar{\pi}_{d_{1}}, V\left(d_{1}\right)\right\}$ there exists a $\delta \in \mathfrak{H}$ such that $\quad S_{p}\left(\pi(\delta) E\left(d_{1}\right) \pi(\gamma \alpha) E\left(d_{1}\right)\right)=S_{p}\left(E\left(d_{1}\right) \pi(\delta \gamma \alpha) E\left(d_{1}\right)\right) \neq 0$. Put $\varphi_{a_{1}}^{\pi}(\alpha)=$ $S_{p}\left(E\left(d_{1}\right) \pi(\alpha) E\left(d_{1}\right)\right)$ for $\alpha \in U(\mathbb{F})$, then $\varphi_{a_{1}}^{\pi}(\alpha)=\varphi_{a_{1}}^{\pi}\left(\alpha^{o}\right)$. Therefore we have $\varphi_{d_{1}}^{\pi}(\delta \gamma \alpha)=\varphi_{d_{1}}^{\pi}\left((\delta \gamma \alpha)^{0}\right) \neq 0$, so that $\pi\left((\delta \gamma \alpha)^{o}\right) E\left(d_{1}\right) \neq 0$, which means $(\delta \gamma \alpha)^{o} \bar{\epsilon} \mathfrak{M}_{0}^{d_{1}}$ and so $\alpha \in \mathbb{M}^{d_{1}}$. This completes the proof.

Let $e_{i}(i=1,2, \ldots, n)$ be a base of $V\left(d_{1}\right)$ and put $\mathfrak{M}_{e i}=\left\{\alpha \mid \pi(\alpha) e_{i}=\right.$ $0, \alpha \in U(\mathscr{S})\}$, then $\mathfrak{M}_{e i}(i=1,2, \ldots, n)$ are maximal left ideals of $U(\mathbb{S})$. If we denote $\pi_{i}(i=1,2, \ldots, n)$ the canonical representations of $U(\mathbb{S})$ on $U(\mathbb{S}) / M_{e t}$, they are equivalent to π.

We shall consider the representation $\pi^{\prime}=\sum_{i=1}^{n} \oplus \pi_{i}$ on $V^{\prime}=$ $\sum_{i=1}^{n} \oplus U(\mathscr{F}) \mathfrak{M}_{e i}$, then $\pi(\alpha) V\left(d_{1}\right)=0(\alpha \in U(\mathscr{S}))$, if and only if $\pi^{\prime}(\alpha) e=0$ for the vector $e=\left(e_{1}, \ldots, e_{n}\right) \in V^{\prime}$.

Moreover by the irreducibility of $\left\{\bar{\pi}_{l_{1}}, V\left(d_{1}\right)\right\}$, we can easily show the following proposition.

Proposition 4. The canonical representation of $U(\mathbb{S})$ on $U(\mathbb{S}) / M^{d_{1}}$ is equivalent to π^{\prime}.

Remark. We notice that this proposition implies the following Theorem of Harish-Chandra: ${ }^{5)}$ In order that two quasi-simple irreducible representations $\left\{\pi_{1}, V_{1}\right\}$ and $\left\{\pi_{2}, V_{2}\right\}$ of $U(\mathscr{S})$ are equivalent, it is necessary and sufficient that $\varphi_{a_{1}}^{\pi_{1}}(\alpha)=\varphi_{a_{1}}^{\pi_{2}}(\alpha)$ for all $\alpha \in U^{\circ}(5)$ and for some $d \in \Omega$ such that $V(d) \neq(0)$.

As a consequence of the above proposition, we see that the representation $\left\{\bar{\pi}_{a}^{\prime}, V^{\prime}(d)\right\}$ of \mathfrak{A} on $V^{\prime}(d)$ is equivalent to $\sum_{i=1}^{n} \oplus \bar{\pi}_{i a}$. If we denote the representation of $U^{o(S)}$ on $V(d)$ by $\left\{\tilde{\pi}_{a}, V(d)\right\}$, then $U^{o}(\mathfrak{Y}) \subset U^{o}(\mathbb{G})$, so that if $d \neq d_{1},\left\{\tilde{\pi}_{a}, V(d)\right\}$ is not equivalent to $\left\{\tilde{\pi}_{l_{1}}, V\left(d_{1}\right)\right\}$, by the Proposition 3. This means that if M is an invariant subspace of V^{\prime} under $\pi^{\prime}\left(U^{o}(\mathscr{S})\right), M=\sum_{d \in \Omega} M \cap V^{\prime}(d)$.

On the other hand, since $\mathfrak{M}^{d_{1}}$ is \mathfrak{f}_{0}-invariant, $\mathfrak{M}^{a_{1}}=\sum_{\tilde{d} \in \Omega^{\prime}} \bar{\Re}^{d_{1}}(\tilde{d})^{11)}$ for the adjoint representation, so that $U(\mathscr{S}) / M^{d^{d_{1}}}=\sum_{\tilde{d} \in \Omega^{\prime}} \bar{U}(\mathscr{S})(\tilde{d}) / \overline{M R}^{d_{1}}(\tilde{d})$ $\left.=\sum_{\tilde{d} \in \Omega^{\prime}} \overline{(U(\mathscr{S})} / M^{d^{d}}\right)(\tilde{d})$ for the representation of $U(\mathfrak{f})$ induced, by the adjoint representation, on the factor space $U(\mathscr{S}) / \mathcal{M}^{d_{1}}$, which we shall call the adjoint representation on $U(\mathscr{S}) / \mathbb{M}^{d_{1}}$.

If $(\alpha)_{\mathfrak{M}^{d_{1}}}{ }^{12]}\left(\epsilon \overline{\left(U(\mathbb{S}) / \mathbb{M}^{d_{1}}\right)}(\tilde{d})\right)$ and $u\left(\in U^{o(\mathscr{S})}\right), \quad(u \alpha)_{\mathfrak{M}^{d_{1}}}$ and $(\alpha u)_{\mathfrak{M}^{d_{1}}}$ belongs to $\overline{\left(U(\mathscr{S}) / M^{\alpha_{1}}\right)}(\tilde{d})$. Hence $\overline{\left(U(\mathscr{S}) / M^{d_{1}}\right)}(\tilde{d)}$ is invariant under $\pi^{\prime}\left(U^{o}((5))\right.$ and we have

$$
\overline{\left(U\left((\mathbb{S}) / M^{d_{1}}\right)\right.}(\tilde{d})=\sum_{d \in \Omega} \overline{\left(U\left((\oiint) / M^{d_{1}}\right)\right.}(\tilde{d}) \cap U(\mathbb{S}) / M^{\alpha_{1}}(d) \ldots(\mathrm{A})
$$

It turns out that $\left.\operatorname{dim}(\overline{U(S)})^{M^{d_{1}}}\right)(\tilde{d})<\infty$ and that in order that $\alpha(\in U(\mathscr{F})$ ($\tilde{d})$) belongs to $\mathbb{M}^{a_{1}}$, it is sufficient that $\left(\beta^{*} \alpha\right)^{o} \in \mathbb{M}_{0}^{\alpha_{1}}$ for all $\beta \in U(\mathbb{S})(\tilde{d})$. Henceforward we shall assume that $\mathfrak{M}_{0}^{d_{1}}$ is a self-adjoint ideal of $U^{o}(\mathscr{S})$; i.e. if $\alpha \in \mathbb{M}_{0}^{\alpha_{1}}, \alpha^{*} \in \mathbb{M}_{0}^{d_{1}}$. Let $\left(\alpha_{i}\right)_{\mathfrak{M}^{a_{1}}}(i=1,2, \ldots, r)$ be a base of $\overline{\left(U(\sqrt{S}) / M^{a_{1}}\right)}\left(\tilde{d}_{\mu}\right)$. Then in order that $\alpha\left(\in U(\mathbb{F})\left(\tilde{d}_{\mu}\right)\right)$ belongs to $M^{a_{1}}$, it is sufficient that $\left(\alpha_{i}^{*} \alpha\right)^{o}(i=1,2, \ldots, r)$ belong to $M_{0}^{a_{1}}$.

From the preceding considerations on $\left\{\tilde{\pi}_{d}^{\prime}, V^{\prime}(d)\right\}$ and on (A), we can obtain the following

Theorem 3. If $\mathfrak{R}_{0}^{d}\left(\neq U^{o}(\mathbb{B})\right)$ for some $d_{1} \in \Omega$ is self-adjoint, all \mathfrak{M}_{0}^{d} 's are self-adjoint.

Corollary. If $\varphi_{d_{1}}^{\pi}(\neq 0)$ for some $d_{1} \in \Omega$ is self-adjoint, ${ }^{13)}$ all φ_{a}^{π} 's are self-adjont.

Next we shall state some lemmas for the following Theorem 4. As $\mathfrak{M}_{0}^{d_{1}}$ is self-adjoint by our assumption, $\mathfrak{M}_{0_{0}^{1}}^{d_{1}}$ is a self-adjoint maximal ideal of $U^{o}(\mathfrak{f})$. Therefore we can easily show that d_{1} is unitary, ${ }^{15)}$ so that, by Theorem 3, all d 's which occur in π are unitary.

Let the elements of Ω, which occur in π, be $d_{1}, d_{2}, d_{3}, \ldots$ and let $u_{n}^{i}(i \leq n, i, n=1,2, \ldots)$ be the elements of $U^{o}(\mathfrak{k})^{14)}$ such that $\pi^{\prime}\left(u_{n}^{i}\right)=E^{\prime}\left(d_{i}\right)$ on $\sum_{i=1}^{n} V^{\prime}\left(d_{i}\right)$ and let $v_{n_{j}^{\prime}}^{j}(j \leq n ; i, n=1,2, \ldots)$ be the elements of $U^{o}(\mathfrak{f})$ such that $\pi^{\prime}\left(v_{n}^{j}\right)=\sum_{i=1}^{j} \pi^{\prime}\left(u_{n}^{i}\right)$. Since all d_{i} are unitary, we can assume that all $u_{n 0}^{i}$ and v_{n}^{j} are self-adjoint. Moreover let the elements of Ω^{\prime}, which occur in the adjoint representation on $U(\mathscr{S}) / M^{d_{1}}$, be $\tilde{d}_{0}, \tilde{d}_{1}, \ldots$. It follows, by (A), that for an arbitrarily fixed number m, there exists a number $t(m)$ and a v_{n}^{m} such that

$$
\begin{gathered}
\sum_{i=1}^{m} V^{\prime}\left(d_{i}\right) \subset \sum_{q=1}^{t(m)} \overline{\left(U(\mathbb{S}) / M^{d_{1}}\right)}\left(\tilde{d}_{q}\right) \quad \text { and } \\
\pi^{\prime}\left(v_{n}^{m}\right)\left(\sum_{\eta=1}^{t(m)}\left(U\left(\delta^{\prime}\right) / M^{d_{1}}\right)\left(\tilde{d}_{q}\right)\right)=\sum_{i=1}^{m} V^{\prime}\left(d_{i}\right),
\end{gathered}
$$

in other words:

$$
\sum_{i=1}^{m} V^{\prime}\left(d_{i}\right)=\left\{(\beta)_{\mathfrak{m}^{d_{1}} \mid} \mid \beta=v_{n}^{m} \gamma, \quad \gamma \in \sum_{q=1}^{t(m)} U(\mathscr{S})\left(\tilde{d_{q}}\right)\right\} .
$$

If α is an arbitrarily fixed element of $U(\$)$ and $n^{\prime}(\geq n)$ is a sufficiently large number, we have the following relations:

$$
\left(\sum_{i=1}^{m} E^{\prime}\left(d_{i}\right)\right) \pi^{\prime}(\alpha)\left(\sum_{i=1}^{m} E^{\prime}\left(d_{i}\right)\right)=\pi^{\prime}\left(v_{n^{\prime}}^{n}\right) \pi^{\prime}(\alpha) \quad \text { on } \quad \sum_{i=1}^{m} V^{\prime}\left(d_{i}\right),
$$

and

$$
\left(\sum_{i=1}^{m} E^{\prime}\left(d_{i}\right)\right) \pi^{\prime}\left(\alpha^{*}\right)\left(\sum_{i=1}^{m} E^{\prime}\left(d_{i}\right)\right)=\pi^{\prime}\left(v_{n^{\prime}}^{m}\right) \pi^{\prime}\left(\alpha^{*}\right) \quad \text { on } \quad \sum_{i=1}^{m} V^{\prime}\left(d_{i}\right) .
$$

On the other hand, we have

$$
\begin{aligned}
& \pi^{\prime}\left(v_{n^{\prime}}^{m}\right) \pi^{\prime}(\alpha) \pi^{\prime}\left(v_{n}^{n}\right)=\pi^{\prime}\left(v_{n^{\prime}}^{m}\right) \pi^{\prime}(\alpha) \pi^{\prime}\left(v_{n^{\prime}}^{m}\right) \\
& =\pi^{\prime}\left(v_{n^{\prime}}^{m} \alpha v_{n^{\prime}}^{m}\right)=\pi^{\prime}\left(v_{n^{\prime}}^{m} \alpha\right) \text { on } \sum_{i=1}^{m} V^{\prime}\left(d_{i}\right) .
\end{aligned}
$$

From the above facts with some additional considerations, we obtain the following Lemma.

Lemma 2. If $\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi(\alpha)\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right)=0\left(\alpha \in U\left(\mathscr{S}^{*}\right)\right),\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi\left(\alpha^{*}\right)$ $\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right)=0$.

By the analogous method with the Lemma 1, it can be shown that $\left\{\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi(\alpha)\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \mid \alpha \in U(\mathscr{S})\right\}$ are the full operators on
$\sum_{i=1}^{m} V\left(d_{i}\right)$. Furthermore, from Lemma 2, it is easily shown that the mapping ($\left.\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi(\alpha)\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \rightarrow\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi\left(\alpha^{*}\right)\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right)$ is a conjugate linear anti-automorphism. Therefore by the well-known theorem on the automorphisms of simple algebras, ${ }^{16)}$ we obtain that $\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi\left(\alpha^{*}\right)\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right)=H_{m}\left\{\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right) \pi(\alpha)\left(\sum_{i=1}^{m} E\left(d_{i}\right)\right)\right\}^{\circ} H_{m_{c}}^{-1}$, where H_{m} denotes a linear operator on $\sum_{i=1}^{n} V\left(d_{i}\right)$ and A^{σ} donotes the adjoint operator of A in the sense of finite dimensional vector space.

Proposition 5. H_{m} is a self-adjoint operator for all m.
Finally we assume that $\left\{\tilde{\pi}_{d_{1}}, V\left(d_{1}\right)\right\}$ is unitary. ${ }^{15)}$ Then the representation $\left\{\bar{\pi}_{d_{1}}, V\left(d_{1}\right)\right\}$ of \mathfrak{M} is also unitary, ${ }^{15)}$ so that we have, by Lemma 2, $\left(E\left(d_{1}\right) \pi(\alpha) E\left(d_{1}\right)\right)^{\sigma}=E\left(d_{1}\right) \pi\left(\alpha^{*}\right) E\left(d_{1}\right)$ for all $\alpha \in U(\mathscr{S})$ and so $H_{1}=1$.

From some more considerations together with Proposition 5, it turns out that if $\operatorname{dim}\left(d_{1}\right)=1$, all H_{m} are positive self-adjoint operators. By this fact, we can easily show that $\varphi_{d}^{\pi}\left(\alpha^{*} \alpha\right)=S p\left(E(d) \pi\left(\alpha^{*} \alpha\right)\right.$ $E(d)) \geqq 0$, for all $\alpha \in U(\mathbb{S})$ and all $d \in \Omega$.

Now we conclude the following
Theorem 4. Suppose $\operatorname{dim}\left(d_{1}\right)=1$. Then in order that the functional $\varphi_{a_{1}}^{\pi}$ is positive, it is necessary and sufficient that $\varphi_{a_{1}}^{\pi}\left(u^{*} u\right) \geqq 0$ for all $u \in U^{o}(\mathscr{S})$. Moreover if $\varphi_{1_{1}}^{\pi}(\neq 0)$ is positive, all φ_{d}^{π} 's are positive.

Remark 1. It seems to be almost certain that the restriction $\operatorname{dim}\left(d_{1}\right)=1$ in the above theorem is unnecessary.

In another paper, we shall discuss the problem with the complete proof of Theorem 4.

Remark 2. In the general semi-simple Lie group G, we can show, by a slight modification of Harish-Chandra's Theorem ${ }^{637)}$ that in order that a quasi-simple irreducible representation $\{\pi, \mathfrak{y}\}$ of G is infinitesimally equivalent to a unitary irreducible representation, it is necessary and sufficient that some spherical fuction $\varphi_{d}^{\pi}(\neq 0)$ is positive in our sense. Therefore the above theorem gives a sufficient condition in order that $\{\pi, \mathfrak{F}\}$ is infinitesimally unitary.

References

1) C. Chevalley: Theory of Lie groups, I. Princeton (1946).
2) J. Dixmier: Sur un théorème d'Harish-Chandra. Acta Sci. Math., 14, 3 (1952).
3) R. Godement: A theory of spherical function, I. Trans. Amer. Math. Soc., 73, 3 (1952).
4) Harish-Chandra: On some applications of universal enveloping algebra of semi-simple Lie algebras. Trans. Amer. Math. Soc., 70, 2 (1952).
5) - : On representations of semi-simple Lie groups. Proc. Nat. Acad. Sci. U.S.A., 37, 170-173, 362-365, 366-369 (1951).
6) -: Representations of a semi-simple Lie group on a Banach space, I.

Trans. Amer. Math. Soc., 75, 2 (1953).
7) S. Sakai: On the representations of semi-simple Lie groups. Proc. Japan Acad., 30, 14 (1954).
8) $\mathfrak{C}(\tilde{d})$ is a subspace of \mathfrak{G} composed of all elements which transform under $\operatorname{ad}\left(K_{0}\right)$ according to \tilde{d}.
9) There not exist non-trivial subspaces which are invariant under $\{E(d) \pi(\alpha)$ $E(d) \mid \boldsymbol{\alpha} \in U(\mathbb{G})\}$.
10) The representation of \mathfrak{G}_{0} corresponding to the adjoint representation is the form $\alpha d(x) \alpha=[x, \boldsymbol{x}]=x \alpha-\alpha x\left(x \in \mathbb{E}_{0}, \boldsymbol{x} \in U(\mathbb{G})\right)$.
11) To distinguish the adjoint representation from π we denote $\overline{\mathfrak{m}}^{a_{1}(\tilde{d}) \text {. }}$
12) $(\alpha)_{\mathfrak{M}} d_{1}$ denotes the canonical image of $\alpha(\in U(\mathbb{G}))$ in $U(\mathbb{C}) / \mathfrak{m} d_{1}$.
13) A linear functional φ is said to be self-adjoint, if $\overline{\varphi\left(\alpha^{*}\right)}=\varphi(\alpha)$ for all $\alpha \in U(\mathbb{G})$.
14) The existence of such u_{n}^{i} is assured by the generalized Burnside's theorem, and proposition 3.
15) In general, a finite-dimensional representation $\{\tilde{\pi}, \tilde{V}\}$ of an algebra A with adjoint operation is said to be unitary, if it satisfies that $\tilde{\pi}\left(\alpha^{*}\right)=(\pi(\alpha))^{\sigma}$ where $(\pi(\alpha))^{\sigma}$ is the adjoint operator of $\pi(\alpha) . d(\in \Omega)$ is said to be unitary, if it contains a unitary representation of $U(\mathfrak{f})$.
16) E. Artin, C. Nesbitt, and R. Thrall: Rings with minimum condition.
17) Let c be the center of \mathscr{G}_{0}, then K_{0} is the analytic subgroup of G_{0} corresponding to a ring $\left(t_{0}+c\right) / c$.

