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1. In the present note we study locally convex spaces, with
he compact-open topology, of real valued continuous unctions on
completely regular spaces. Furthermore using its results we give
an answer to a problem proposed by N. Bourbaki and J. A. Dieu-
donn: Does there exist a t-space which is not bornologic?

Concerning vector spaces we adopt the notation o J. A. Dieu-
donn and consider only vector spaces over the real field.

2. Let X be a completely regular space and let ((X, R) be a
locally convex vector space, with the compact-open topology, of all
real valued continuous 2unctions on X. Then we prove the 2ollowing

Theorem 1. In order that the g(X, R) is a t-space, it is neces-
sary and sucient that X satisfies the following condition:

(Q) any closed and relatively precompact subset of X is compact.
To prove this we shall need the 2ollowing lemmas.
Lemma 1. Let F be a non-zero continuous linear function on

g(X, R). Then there is the minimal compact non-void subset K of X such
that D(f)(K= implies F(f)=0, where D(f)= [xlx e X & f(x)0}.

Froof. Let be the 2amily o2 all compact subsets C such that
if D(f)(C= then F(f)=0. Since F is continuous, is not void.
Moreover F is non-zero, hence satisfies the finite intersection
property and in fact is an ideal, i.e., if F and belong to
then F (F e . Accordingly the intersection K of all subsets of

is non-void and belongs to . Thus we see that K is the re-
quired one.

From now on the set K in Lemma i will be called the carrier
of F and denoted by K, (for the zero function 0 let K0=(P).

Lemma 2. Let B be a weakly bounded subset of (X, R)’. Then
the closure C of the sum of all carriers of F in B is relatively
precompact.

Proof. Suppose that the lemma is not true. Then there are a
function f of (X, R) and a countable subset Ix.} of C such that
]f(x)i- as n- . Then we may assume without loss of gener-
ality that any x eK for some F e B’ and that f(x+) f(x) + 1
for n=l, 2, Let U. be a neighbourhood of x,, such that U.
--[xfi_f(x)-f(x)l<l/2. Then for nm UU= and for any
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sequence f f (X, R) & D(f)U,} :=f, g(X, R). Now we
assert that there is a sequence If. 1i=1, 2, such that F,(f
+f,.+.--+)-n and D(f.)K..= for ij and such that

D(f,)U,,. To prove this assume that [f,:lJ<i} has been already
constructed, and find U.., such that :<K,.. U..,- 6, which is possi-

ble, since the carrier of F is compact by Lemma 1. Then we show
that there is an f (X,R)such that D(f)U.: and F.(f)#0. For
suppose D(f)U., implies F.,(f)--0. Let U be a neighbourhood

of x., such that U’U.., and such that p(X-U.,)I and p(U’)O
for some pe(X,R). Then for any feg(X,R) such that D(f)
(K%-U’)-, f=f+(1-p)f, D(pf)K.%-- and D((1-p)f)U.

hence F.,(f)-O. This implies that K,%-U contains the carrier

K.., of F.,, which is a contradiction. Hence there exists an f such

that D(f)U., and F.,(f)#0. Then for some k F.(L+... +fn_
+ kf)--n,. Thus by setting kf=f,,, we obtain the sequence in ques-
tion by induction.

Now let f==f..,. Then f(X,R) and for any i F.(f)
=F.,,(.=L,. + F.,(.> f.,:)-F,(=f.)-n, which implies that
is not weakly bounded.

The proof of Theorem 1. Let (X, R) be a t-space and let C
be a closed and relatively preeompaet subset of X. Then
=[F[x C} is weakly bounded, where F(f)=f(x). But if C is
not compact, there is a maximal filter of C such that it has no
limits in C. Accordingly we can find a point of (C)-C such

hat converges to , where B(C) is the Cech-eompaeification of
C. Then [Flx G}IG weakly converges to F. where F(f)
is the value of the extension, at , of f over B(C). However,
has no carrier in X. Hence by Lemma 1 F is not continuous.
This means that B’ is not weakly relatively compact, which is a
contradiction. Accordingly C is compact and so X satisfies the
condition (Q).

Conversely, let X be a space satisfying the condition (Q). Then
we have only to prove that any weakly bounded subset B’ of
(X, R) is equi-eontinuous. Now by Lemma 2 and by our assump-
tion for any weakly bounded subset B there is a compact subset
K of X such that any FB has he carrier contained in K. Let
o.(F) be an element of (K, R)’ such that for any f (K, R) o.(F)(f
=F(f) where f is an extension of foyer X. Then
is a weakly bounded subset of g(K, R)’ and g(K, R) is a Banach
space, hence it is a t-space. Therefore we can find an 0 such
hat fe(K,R) and llfl[ implies IF(f)ll for any Fea(B’).
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Hence f e(X,R) and lf(x)ie on K implies IF(f)l<l for any
F e B’, which shows that B’ is equi-continuous.. In general a locally convex vector space is bornologic if and
only if it is a boundedly closed and quasi-t-space. However in our
special case we obtain the following theorems.

Theorem 2. Under the same assumption as in Theorem 1, the
following conditions on X are equivalent"

(1) X is a Q-space,)
(2) (X, R) is boundedly closed,
(3) (X, R) is bornologic.
Proof. We first show that (1) implies (3). Let X be a Q-space.

Then we see that X satisfies the condition (Q) of Theorem 1, hence
g(X, R) is a t-space and so is a quasi-t-space. Furthermore let F
be a real valued linear function on 6(X, R), which .ransforms all
bounded subsets into bounded subsets. Then F is a bounded func-
tional in the sense of lattice (X,R), i.e., for any f there is a
positive number rz such that gllfl implies F(g)i<__rz. Hence)

F is continuous, which implies that (X, R) is bornologic.
Obviously (3) implies (2).
To prove that (2) implies (1), suppose that X is not a Q-space.

Then there exists a point of e(X)-X. Now let F be a linear

function on (X, R) such that for any f e g(X, R) F(f)=f(), where

f is an extension of f over e(X). Then F transforms any bounded
subset into bounded subset. For if F(B) is not bounded for some
bounded subset B of g(X, R), then there is a sequence If. If. e B}
such that F(f)=r and lrl-, as n-->. Then we show that

UD(f,-r,)#-X. For if UD(f,-r,)--X f-,= (1/2"Aif,-rl) is

strictly positive, hence its extension over e(X)f ,_ (1/2 A f,-r i)

is strictly positive. But f()--r implies f()=0, which is a con-
tradiction. Thus we see that f,(x)-r, for some point x of X, which
also contradicts the boundedness of B. On the other hand F has
no carrier, hence by Lemma I it is not continuous, which means
that (X, R) is not boundedly closed.

Theorem 3. Let X be a locally compact space and let (X, R)
be a locally convex vector space, with the compact-open topology, of
all real valued continuous functions on X which have compact
carriers. Then the following conditions on X are equivalent"

(1) X satisfies the condition (Q) in Theorem 1,
(2) (X, R) is a quasi-t-space,
(3) (X, R) is bornologic.
Proof. We first show that (2) implies (1). Let C be a closed

and relatively precompact subset of X and let V= [f If g(X, R)
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& f(x)ll for any x e C}. Then V is a barrel and absorbs every
bounded set, since any bounded set of g(X, R) is uniformly bounded
on C. Hence if g(X, R) is a quasi-t-space, V is a neighbourhoocl
of 0 in ((X, R). Accordingly 2or some compact subset K of X
and or some positive number r, f(x)ir on K implies f e V, from
which follows that C is a subset of K. Hence L is compact.

Obviously (3) implies (2).
We finally show that (1) implies (3). Let lz be a convex, sym-

metric subsets absorbing every bounded subset of g(X, R) and let
Cbe the sum o all D(f) such f6Y. Then we show that C is
relatively precompact. For if this is not true, we can find a amily
[D(f)} such that D(f)(D(f)=.$ for nm and any compact subset
meets only a finite number of members of [D(f)}. Then Inf,} is
a bounded subset of g(X, R) and nV $ nf, which is a contradiction.
Hence C is relatively precompact. Accordingly if X satisfies (Q),
( is compact. Now let B={fID(f)V() & Ilfli___<l} where U(
is a compact neighbourhood of C. Then B is bounded, hence for some
>0, B,V. Therefore if f is a function in g,(X,R)such that

f(x)l<____l/2, for any x e U(C), f e V, which implies that V is a neigh-
bourhood of 0 in ,(X, R).

4. Example. Let W(o.) be the space, of all ordinals less than
the initial ordinal . of the fourth class, with the interval topology
and let L be the subspace of W(o.) whose elements are not o0-1imits.
Then the space L is a,-additive and is not a Q-space since it has
no complete structures. Furthermore by the normality and the -additivity of L any closed and relatively precompact subset of L is
finite, hence L satisfies the condition (Q). Thus by Theorems 1 and
2 (L, R) with the compact-open topology is just an example of the
space which is a t-space but is not bornologic.

We finally remark that if X has a complete structure then it
satisfies the condition (Q) and that for any space X the condition
(Q) implies the following condition" (Q) any closed and countable
compact subset of X is compact, but that in general the converse
is not true. For in the product space T of the spaces W(+ 1)
and W(o+l) with the interval topologies respectively let T be
the subspace of T" T-[(a, o)la is a limit point in W(o+ 1)}.

Then the resulting space T satisfies the condition (Q) but does
not enjoy the condition (Q).
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