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If S and E are T-spaces, a single-valued mapping f(S)=E is
said to be closed provided that the image of every closed set in S
is closed in E. It is interesting to know how the topology of E is
affected by the topology of S under f. Concerning this question,
G. T. Whyburn and A. V. Martin have recently investigated and
obtained some results.)

In this note, we will consider the case when the topology of E
affected by the topology (under some restrictions) of S under f
becomes metrizable.

1. We will firstly prove the following

Theorem 1. Let S be a perfectly separable Hausdorff space
and let E a compact space.) If f(S)=E is a closed mapping such
that f-(p) is compact for every point p of E, then E is a separable
metric space.

To establish this theorem, we prove the following lemmas.

Lemma 1. Let S be a perfectly separable Hausdorff space. If
f(S=E is a closed continuous mapping such that f-(p) is compact
for every point p of E, then E is perfectly separable.

Proof. Let U} (n= 1, 2., 3, ) be a countable basis of open
sets of S. For each finite subs (n, n, ..., n) of (1, 2, 3, ...),

let (U.)o be the union of all f-(p)such that Uf-(p). Then

(U,:)o is an open inverse set, and the family {(U.)o} of all such
i=l ll

sets is evidently countable.
Now let 0 be an open set of E and p e O, then f-(O)f-x(p)

and f-(O) is open in S because f is continuous. Then f-(O)=U.

such that Uf-(p), hence (U%)of (p). As f is closed and
k=l

1) G.T. Whyburn: Open and closed mappings, Duke Math. Jour., 17, 69-74
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2) We use "compact" in the sense of "bicompact".
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continuous, f[(U%)o} is open in E. Hence the family of open sets

[f{(,U)o} ] is a countable basis of open sets of E. Thus we get

the lemma.
Lemma 2. Let S be a Hausdorff space and let E a compact

space. If f(S)=E is a closed mapping such that f-(p) is compact
for each point p of E, then f is continuous.

Proof. Suppose on the contrary that f is not continuous. Then
there exists a point a e S at which f is not continuous. Let be
the filter of neighborhoods of a and be the filter whose base is
f(). Then {} does not converge to f(a)---p. Hence there exists
an open neighborhood V(p) such that V(p) ’. Let ’ be an ultra-
filter which contains , then CV(p)’ where CV(p) denotes the
complement of V(p). Since E is compact by assumption, con-
verges to a point q. Then p4=q because CV(p)e , and hence
a f-(q). As f-(q) is compact and S is a Hausdorff space, there
exist open neighborhoods U(a)and U{f-(q)} of a and f-(q) respec-

tively such that U(a)U{f-(q)}--4’. Then-{7(a) f-(q)= and hence
q f

On the other hand, since f[U(a)} e and ’-->q, we have V(q)

f{ U(a) 4= for every open neighborhood V(q) of q. Hence q e f U(a) }.

Because f is closed, we have f[ U(a)} Cf U(a)}, which contradicts

the fact that q -f U(a)}.
Proof of Theorem 1. By lemmas 1 and 2, it is evident that E

is perfectly separable. To prove that E is metrizable, we have only
to prove that E is a Hausdorff space because E is a compact space.
Let p and q be any distinct two points of E. Then f-(p)f-(q)=,
and f-(p) and f-(q) are compact sets by assumption. Since S is a
Hausdorff space, there exist open neighborhoods U[f-(p)} and
U[f-(q)} of f-(p) and f-(q) respectively such that U[f-(p)}
Uf-1(q)} --d,.

As f is closed continuous, there exist open inverse sets
Uo [f-(p)} and Uo {f-(q)} such that U {f-(p)} Uo {f-(p)} f-(p)
and U{f-(q)} .. Uo {f-(q) Df-(q). Hence E is a Hausdorff space.

Remark. Theorem 1 is also proved by use of Lemma 2, Theorem
3 in the following section, and T. Iwamura’s theorem.

2. In this section, we will consider the case when S is a metric
space.

We begin with proving the following"

3) T. Iwamura: Remarks on closed mappings and compactness, Natural Science
Report of the Ochanomizu Univ., 1, 6-8 (1951).
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Theorem 2. If S is a metric space and f(S)=E is a closed
continuous mapping, then E is a metric space.

Proof. (1) E satisfies the first countability axiom. In fact,
let O’)(x)(n:l, 2, 3,...)be open spheres with the center x and the

radius 1 for each point x of S. For any point p of E, we have
n

_O("(x)f-(p). Since f is closed continuous, in the same way as

Lemma 1, we can see that (O’)(X))o is an open inverse set.

Let O’)(p)( O")(X))o and let G(")(p)f[O’)(p)}, then G")(p) i an

open neighborhood of p.
Now we will prove that [G(’)(p)} (1, 2, 3,...) is a basis of the

neighborhood system of p. Let O(p) be any open neighborhood of p,
then f-O(p)} is open in S because f is continuous. Let d be the
distance between Cf- [O(p)} and f-(p), then O’)(x)Cf- O(p)

for an n such that <d. Hence O)(p)Cf-O(p)}. Then we have

G:’*)(p)CO(p). Thus E satisfies the first countability axiom. Further
it is easy to see that G()(p)G:)(p) and

(2) For any point p of E and any index n, there exists some
index m=m(p, n) such that G)(p)G)(q) implies G)(q)CG)(p).
For, let d’ be the distance between Cf-[G(:(p)} and f-(p), and let m

an integer such that < d’. If G)(p)G)(q), then O)(p)O)(q).
m

For any point z of O)(q), there exists y e f-(q) such that z e O)(y).
Since O)(p) and O)(q) are open inverse sets, there exists a point
r such that f-(r)CO)(p)O)(q). Then there exists a point w of
O:)(y)f-(r). Hence w e O)(x) for some point x of f-(p). For
this point x, we can easily see that z e O)(x). As O)(q)CO)(p)
follows from that O)(q) is an inverse open set, we get

By (1), (2) and A. H. Frink’s theorem,) E is metrizable. This
completes the proof of the theorem.

The following theorem due to A.V. Martin") is easily verified
by use of Lemma 1 and Theorem 2.

Theorem 3. If S is a separable metric space and f(--E is a
closed continuous mapping such that f-(p) is compact for each point
p of E, then E is a separable metric space.

By Lemma 2 and Theorem 3, we have also the following"

4) A.H. Frink" Distance functions and the metrization problem, Bull. Amer.
Math. Soc., 44, 133-142 (1937).

5} A.V. Martin" Loc. cit.
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Corollary. Let S be a separable metric space and let E a
compact space. If f(S)=E is a closed mapping such that f-(p) is
compact for each point p of E, then E is a separable metric space.

Theorem 4. If S is a locally compact metric space and f(S)--E
is a closed continuous mapping such that f-(p) is compact for each
point p of E, then E is a locally compact metric space.

Proof. By Theorem 2, E is metrizable. Accordingly we need only
to prove that E is locally compact. For this purpose, let p be any
point of E and let U any open neighborhood of p, then f-(U) is
open in S. For each point x of f-(p), there exists an open neigh-

borhood O(x) of x such that f-(U)O(x) and O(x)is compact because
S is a locally compact metric space. Since f-(p) is compact, there
exist open neighborhoods O(x) of finite points x (i--1, 2,..., n) of

f-(p) respectively such that f-(U) O(x) f-(p) where each

O(x) satisfies the same condition as the above O(x). Then f-(U)

=I =I

Now let 0-( ] O(x))o, then Uf(O)f(O) p and f(O) is open

because f is closed and continuous. As O(x)O and :] O(x) is
=I I

compact, is compact. Hence f(O--)=f(Oi is compact. This com-
pletes the proof of the theorem.


