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1. Introduction. The purpose of this note is to give a simple
proof to the generalized Plancherel theorem. This is one of the
fundamental theorems in harmonic analysis on commutative topologi-
cal groups, and various formulations and proofs to it have been
published. We follow essentially the formulation given by Godement
in his paper 2] (see the references at the end of the note); that
is, we formulate the theorem as a proposition on realization of a
certain kind of representation of a self-adjoint algebra. We shall give
the exact statement in section 3, and the proof in section 4. The
key idea of our proof is consideration of the so-called approximate
identity. In section 2 we shall give definitions of some general no-
tions which are necessary to state the theorem. In ,he last section,
which concerns the special case of commutative groups, some remarks
will be given on the Khintchine theorem on approximation of a posi-
tive definite function by the convolution of a square integrable
function with its adjoint.

2. (H)-representation. Let A be a .-algebra, that is, a complex
algebra which admits an adjoint operation x-> x*. By a representation
of A we mean a representation of the .-algebra A by bounded linear
operators on a Hilbert space H" x R(z), where the adjoint of an
operator is to be defined as the usual one. If, moreover, there cor-
responds to each element z in A an element in H, which we des-
ignate by q(z)or , in such a manner that the following three
conditions are satisfied, then we call the triplet {H, R, (P} an (H)-
representation of A:
(1) q is linear.
(2) (xy)’----R(x)# for xA, yeA.
(3) The image of the whole A by q) is everywhere dense in H.
An (H)-representation is called proper if for any nonzero element cp
in H there exists an x in A such that R(x)q, 4= 0. A filtre [u} whose
elements u belong to A is called an approximate identity with respect
to the given (H)-representation, if, for each x e A, [u} converges to
& strongly in H according to the filtre [u}. (Every (H)-representation
of A corresponds to a bilinear functional on A A which satisfies
certain simple conditions, and this correspondence may be considered
as a general formulation of the method of utilizing positive functionals
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in the theory of so-called unitary representation. But in this note
we discuss these matters no further.)

:. The Plancherel theorem. First we shall give preliminaries
for the Plancherel theorem. They are amiliar in literatures (see, in
particular, Godement [2]), but we shall mention them or clarity.
Let A be a commutative ,-algebra of bounded operators on a Hilbert
space. A character ) of A is a linear, Hermitian ()(x*)--(x)) and
multiplicative ()(xy)--)(x))(y)) functional on A which is not identi-
cally zero and continuous in the uniform opology. For any algebra lI

of operators we shall designate by M the uniform closure of lg and
by M the algebra which, is algebraically generated by lg and the iden-
tity operator. Then the space of characters (A)o A, which is, by
definition, the set of all characters of A topologized by the weak

topology, may be identified with the space (A), with possible ex-
ception of the infinity point of the latter. The Fourier transform
T of an element T in A" T-()-(/ is continuous on (A); if
T is in A, its transform vanishes at infinity. Conversely every
continuous unction on (A) which vanishes at infinity is identical

with the Fourier transform of some element oi A. By the Fourier
transformation, A is isomorphic, as a normecl ,-algebra, with the
algebra consisting of its Fourier transforms, the norm o a con-
tinuous function being defined by II ll-sup$()). Now let A be
an abstract commutative ,-algebra and R be a representation of
A. We call (R(A)) the space of characters of A with respect to
the representation R (where R(A) stands for the algebra consist-
ing of operators R(x), x A), and he function (R(x)) on (R(A))
the Fourier transform of x with respect to R. Using these notions
and notations we formulate the Plancherel theorem as follows"

THEOREM. Let A be a commutative ,-algebra and [II, R, } be
a proper (H)-representation of A. Denote the space of characters
of A with respect to the representation R by and the corresponding
Fourier transform of x in A by . Then"

(a) There exists a measure t on which is uniquely determined,
nonzero for open sets and finite for compact sets.

(b) The Fourier transforms of all elements in A belong to L2(
and they are everywhere dense in it.

(c) The inner product in the Hilbert space tt is expressed by the
integral over with respect to t; that is, for any x and y in A and

for any operator T in the algebra R(A)1, we have
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(cr) In particular, for any x and y in A we have

4. Proof. We shall divide our proof into our steps.
FaST STEP. It is sufficient o prove the assertions for the algebra

R(A) rather than for A; that is, we shall assume that the algebra
in the theorem is itseff a (normed) algebra of operators and the rep-
resentation R is the identical one" R(x) x. Indeed, it is easy o
show that the mapping R(x)--> x satisfies the conditions required in the
definition of proper (H)-representation by the assumption of properness
of the given (H)-representation of A. Hence in the following we
shall not distinguish R(A) from A.

SECOND S:EP. We shall construct a suitable algebra B of opera-
tors such that B contains A and every continuous function on with
compact carrier is identical with the Fourier transform of some ele-

ment in B. For this purpose, we define B as the ideal of A which
is finitely generated by A:

(B---- Tx / / Tx T e A ,xkA

Then, the mapping (P (of he given (H)-representation)rom A into
It is extended to a mapping defined on B (we denote it by he
same notation (P) by putting

,:P(--, Tx) T,:P(x).
Indeel, this definition is possible" If _TcO, here exists a y in
A such that y(-,Tx):O in It, which means that .TxO in B.
:Now the Fourier transform B of B contains every continuous
unction with compact carrier since the transform of A contains all
continuous functions on .

In order to prove the theorem, it is sufficient to prove assertions
(a), (b) and (c) for the algebra B rather than or A. Indeed, firstly
the space of characters is unaltered in this replacement, since

obviously AB. Secondly A-, the set of all & or x e A, is every-
where dense in II by the assumption, and so in B. too; hence if we
show that B is dense in L(), it will ollow, under assertion
provecl for B, that A is also dense in L(). Now continuous func-
tions with compact carriers are everywhere dense in L() by them-
selves; hence assertion (b) will be proved for B if we show that
is contained in L(), or, afortiori, assertion (c) for B. Therefore
it is sufficient o prove assertions (a) and (c’) under the assumption
that the algebra A is such that its transform A contains every
continuous function with compact carrier.

THm SIEP. We shall show that A contains an approximate
identity. For this purpose we introduce ordering in the set of all
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Hermitian elements (z*--x) in A, as usual, by putting y when
x-y is a positive or zero operator, that is, ())-() 0 on .

We call a subset U-{u} of A a U-filter if it satisfies the follow-
ing three conditions:
(4) 0’()1 for uU.
(5) U constitutes a filtre in the ordering defined above.
(6) ()) converges to 1 at every :g e .
It follows that ()) converges to 1 uniformly on compact sets. Now
we denote by Uo the set consisting of all those u whose Fourier trans-
forms have compact carriers and satisfy condition (4). Then Uo is a
U-filtre; it will be utilizecl later to conclude the proof. (More
generally we can show that A contains a U-filtre in any case, that is,
without the assumption that A- contains every function with compact
carrier. But we do not use this fact in our proof.) Now we shall
show that any U-filtre U= u} is an approximate identity. For any
fixed x, {u} is a Cauchy filtre in It (according to the filtre U): For,
first it is a bounded set in tt and secondly for any pair u, v in U
which satisfies uv, we have

by a usual argument. Let be the limit point of [u}. Then we
have, or every y e A, both yuc --> y and yuk -> y& the latter conver-
gence is valid since (X)(.) converges to (;g) uniformly on , or
yu -- y in A. Hence by the assumption of properness we have neces-
sarily $- .

OURTH STEP. Put

F:(y*x)-; x s A, y e A};
then F contains every continuous 2unction on with compact carrier.
Now let U= [u} be an approximate identity; then we have for x e A,
yeA,
7 ) (2, /) lim (x/t, 9)" (u U),

( 8 ( &, 9 ) lira ( y*xu, it )" (u U).
Expression (8) permits us to define a functional t on F as follows:

t 9 ).
It is easy o verify that / satisfies the following three conditions
for F,F:
9 If $ + v e F, then (+) t($) + #(v).

(II) If $(X)0 on , then ($)>0.
Taking, as U in identity (7), the special approximate identity Uo
defined above (the Fourier transforms of whose elements have com-
pact carriers), we have
(12) () lim ($.)" (u e Uo), where $. means the ordinary procluct
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of functions $()) and ().
By properties (9)-(12), the inner product (k, } is expressed by the
integral over a with respect to a measure "
which proves assertion (c) of the theorem. The properties of the
measure mentioned in (a) are easily verified. This completes the
proof o2 the theorem in its general orm.

5. Approximation of positive definite ncions. In order to
apply he Plancherel theorem in section 3 to a commutative group G,
it is sufficient o consider he group algebra A of G (multiplication
being defined by convolution) consisting o all continuous unctions on
G with compact carriers. Then L(G), convolution and embedding of
A into L(G) will play he roles of H, R and respectively, and ob-
viously the group algebra A may be regarded an algebra o operators
on L(G) A=R(A). In his specialization it is desirable to show hat
the character group G coincides with the space o characters of
A (with respect to the regular representation of A) by the natural
correspondence between these two sorts of characters: G-- . Since
it is obvious that the relation o" inclusion holds: G, together
with equivalency of topologies in hese two spaces, we shall show that
every character (in the ordinary sense) o G defines a continuous
character on the algebra A o operators. For this purpose it is suf-
ficient to show that if a character X0 on G defines a (continuous)
character on A (the existence o such a character is guaranteed in
the abstract theorem in section 3), then the (ordinary) product o(S)Z(s)
with any character Z of G defines also a character on A in the same
sense. This act ollows easily rom the consideration in the ollow-
ing. But we can show it also by simple computation o norms of
2unctionals and operators. (This direct way was noticed o me by
H. Umegaki.)

In relation with the preceding consideration, we shall add a ew
remarks, modifying some problems which were discussed in Godement
[1. Let G be a (not necessarily commutative)group possessing a
two-sided invariant measure, and let f be a continuous positive definite
unction on G. Then the following three conditions are mutually
equivalent"
(13) The unctional defined by f on the group algebra A is continuous
in the operator norm of A.
(14) For any integrable positive definite function , we have

f(s)(s)ds O.

(15) There exists a filtre Ix} whose elements x are square integrable
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functions on G, and we have
f(s)

uniformly on compact sets, where the multiplication means con-
volution.

In general, these properties are possessed not necessarily by all
positive definite functions on a given group, as was shown in my
previous paper 3_. But for a commutative group, thus we obtain a
proof to the Khintchine theorem which asserts that every positive
definite 2unction is approximated as in condition (15),a proof
which is not basecl on the Plancherel theorem ior groups.

We shall discuss the problems in this section 2urther and more
closely on another occasion.
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