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The object of the present note is to develop the structure
heory of commutative semigroups. By a semigroup we shall always
mean a commutative semigroup with identity element 1 and zero
element 0. If semigroup S has no identity and zero elements, it
can always be imbedded in another S, which has them. S consists
of the elements of S together with new elements 1 and 0. The
product of two elements x, y e S is defined to be the old product
xy of S if x, y e S, otherwise x0=0=0x and xlx-lx for all x e S.
Moreover, every ideaF of S is again an ideal of S and every
principal ideal of S which is generated by an element x e S is also
a principal ideal of S generated by the same element. Therefore,
the assumption that a semigroup has identity and zero elements
does not restrict us.

Let S be a semigroup (we recall our convention that "semi-
group" means a commutative semigroup with identity element and
zero element) and p an element of S, and we define the following
(p)-equivalence relation in S"

Two elements a and b of S are (p)-equivalent (denoted by aPb)
if and only if

Then it is clear that the (p)-equivalence relation satisfies the follow-
ing equivalence relations"

P
( 1) a,.,.,a for all a S,

(2’) if aPb then ba,
(3’) if aPb and bPc then

Now we define the new equivalence relation (denoted by ),
using the above (p)-equivalence relation, in S as follows-

ab if and only if a Pb for all p e S.
It is easy to see that the relation satisfies the ollowing equiva-
lence relations"
(1) a..-a or all aeS,
(2) if a..b then ba,
(3) if a..b and bc then a.c.
In the discussion below, we denote by S the set of all elements in
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S which are equivalent to x under the relation --. Clearly, either
S--S or Z

Lemmn 1. The equivalence relation is multiplicatively in-
variant, that is, if ab then xaxb for any x S.

Proof. Let p be an arbitrary element of S and j a positive
integer, then from ab we have

=(Spx..b)._(zpx. a)
Hence

:(Zp(xa))= =( . .a)
( (zvx a’))- ( ,(Zpx b))

p
Therefore xaxb and, as p is arbitrary, we have xaxb.

Lemma 2. ery S is a sub-semigroup of S.
Proof. First, we show aa for all a eS. Let p be an arbi-

trary element of S, then it is clear that
:(zp.a)

This shows that aa. As p is arbitrary, aa.
Now, let a, b be any two elements of S. Then axb and by

Lemma 1 abbbx. This implies ab eS and so S is a sub-
semigroup of S.

Lemma . S.
Proof. If a S and b e S then ax, by. Hence by Lemma

I abayxy and ab S, whence S.SS.
Lemma 4. If for idempotents e, f in S ef, then e:f.
Proof. If e, f are two idempotents ef, then

Se- Se-
Hence e:ef=f.

Corollary. Every S has at most one idempotent.
Lemma . If S contains an idempotent e ,then Se is the group

ideal (Suschkewitsch kernel)) of S.
Proof. If ae, be are contained in Se (a, b e S) then

ae be-abe abe (ab)e e Se
that is, Se is a semigroup with identity e.

Let a e S then ae and =( e a) =(Se e’)=Se. There-
fore Sea=Se. Hence there exists an element a in Se such that
aa=e and ae=a. This implies Sa=Se and Sa=Se for n=l,
2, It ollows ,(Sp.a’)=Spe-G,(Sp.e) for any p e S.
Thus ae and ae Se. This shows that an element ae has an in-
verse a in Se, and Se is a group.

Lemma 5. The set-theoretical join S-of those S’s containing an
idempotent is a sub-semigroup of S.
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Proof. Let a, b be any two elements of S then there exist
idempotents e, f such that ae, b,f. Hence, by Lemma 1, abef
and ef is an idempotent. Thus abe SS.

Henceforth, we denote by G the group ideal Se of S contain-
ing an idempotent e. Then it is clear that if e and f are identities
of groups G and G, respectively, then ef is the identity of the
group G.

Lemma 7. G.GG.
Proof. From Lemma 3 G.GS. If e and f are identities

of groups G, G, respectively, then G-Sef GGef Ge Gf

From Lemmas 1-7 we have"

Theorem. A commutative semigroup S is decomposed into sub-
semigroups in the following way"

,S’= U (U &),
where

(i) S*’s and S’s are sub-semigroups of S having no elemen in
common,

ii) each semigroup S* has no idempotent,

(iii) each semigroup S, has one and only one idempotent e and
Se=G is the group ideal (Suschkewitsch kernel) of S,,

(iv) the set theoretical join S of all S’s having a group ideal is
a sub-semigroup of S,

(v) S.SS (S or S may be a S* or a S)
(vi) for group ideas G.GG.
Corollary, 1. If, in S, every element a satisfies the condition

Sa:Sa+.-- Sa+-- for some positive integer n (n depending on

a) then S--S.

Corollar), 1.1. If S satisfies the descending chain condition for
ideals (or principal ideals) then S-S.

Corollary 1.2. If, in S, every element is of finite order then

Corollary 2. If S is regular in the sense of J. v. Neumann or,
equivalently for the commutative case, S admits relative inverses,
then S- U G, where G’s are groups satisfying the condition (vi) of
the Theorem.

After my investigation had been completed, Mr. T. Tamura at
Tokushima University communicated to me that he had also obtained
a similar result using a method different from mine.
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