137. Probabilities on Inheritance in Consanguineous Families. XI

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology
(Comm. by T. Furuhata, m.J.a., July 12, 1954)
VIII. Combinations through the most extreme consanguineous marriages

5. Distributions after successive consanguineous marriages

We have derived in $\$ 3$ the probability of parent-descendant combination. Elimination of a type of parent leads to a corresponding distribution of genotypes in a generation of descendant. Namely, we have, for any $n \geqq 1$, a relation

$$
\bar{A}_{\left(11 ; 00_{t-1} \mid n\right.}\left(\xi_{\eta}\right)=\sum \bar{A}_{a b}^{\mathcal{F}_{t-1 \mid n}}\left(a b ; \xi_{\eta}\right) .
$$

In case $n=1$, we get, by actual computation,

$$
\begin{aligned}
& \bar{A}_{(11 ; 0)_{t-11} 1}(i i)=i-i(1-i) \boldsymbol{R}^{\frac{5+3 \sqrt{5}}{5} \omega^{t}} \\
& \bar{A}_{(11 ; 0)_{t-111}}(i j)=\quad 2 i j \boldsymbol{R}^{\frac{5+3 \sqrt{5}}{5}} \boldsymbol{\omega}^{t} .
\end{aligned}
$$

The result shows that the distribution deviates from ordinary one. More precisely, there hold the relations

$$
\bar{A}_{\left(11 ; 0_{t-11} 1\right.}\left(\xi_{\eta}\right)-\bar{A}_{\xi \eta}=2 R\left(\xi_{\eta}\right)\left(1-R^{5+3 \sqrt{5}} \omega^{t}\right)
$$

with $R(i i)=\frac{1}{2} i(1-i)$ and $R(i j)=-i j$. Namely, any homozygous type increases while any heterozygous one decreases. For instance, the values of the factor $1-R(1+3 \sqrt{5} / 5) \omega^{t}$ are equal to $11 / 20,23 / 40$, $27 / 40,117 / 160$ etc. for $t=2,3,4,5$ etc., respectively.

Though there exists a deviation in the first generation, it vanishes out soon in the next generation. In fact, as shown in §3, we have an identity $f_{t-1 \mid n}=\kappa_{n}$ for any $n>1$, whence readily follows

$$
\bar{A}_{\left.(1 ; 0)_{t-1}\right)^{\prime n}}\left(\xi_{\eta}\right)=\bar{A}_{\xi \xi} .
$$

By the way, it would be noted that the frequency of gene A_{i} in the first generation is given by

$$
\bar{A}_{(11 ; 0)_{t-1} 11}(i i)+\frac{1}{2} \sum_{b \neq i} \bar{A}_{(11 ; 0)_{t-1} 11}(i b)=i .
$$

Consequently, the random matings within the generation produce also the distribution coincident with the original one, i. e. $\overline{A_{i i}}=i^{2}$, $\bar{A}_{i j}=2 i j$.

6. Descendants combinations

By eliminating a type of parent from a parent-descendants combination, we get a corresponding descendants combination. Its probability is namely defined, for $\mu, \nu \geqq 1$, by an equation

$$
\xi_{t-1 \mid \mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \sigma_{\left(11 ; 0_{t-1} \mid \mu \nu\right.}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \bar{A}_{a \delta} \tilde{\eta}_{t-1 \mid \mu \nu}\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
$$

In case $\mu=\nu=1$, we get, by actual computation, the following results:

$$
\begin{aligned}
& \varsigma_{t-1 \mid 11}(i i, i i)=i+i(1-i)\left\{\boldsymbol{R} \frac{9+4 \sqrt{5}}{5}-\omega^{t}+\frac{1}{2^{t}}-\frac{1}{5} \frac{1}{4^{t}}+i\left(-\frac{2}{2^{t}}+\frac{1}{4^{t}}\right)-i^{2} \frac{1}{4^{t}}\right\}, \\
& s_{t-1111}(i i, i k)=i k\left\{\boldsymbol{R}^{3+\sqrt{5}} \omega^{t}-\frac{1}{2^{t}}+\frac{2}{5} \frac{1}{4^{t}}+i\left(\frac{2}{2^{t}}-\frac{2}{4^{t}}\right)+i^{2} \frac{2}{4^{t}}\right\} \text {, } \\
& \mathfrak{s}_{t-1 \mid 11}(i i, k k)=i k\left\{\boldsymbol{R} \frac{1}{5} \omega^{t}-\frac{1}{5} \frac{1}{2^{t}}+\frac{2}{15} \frac{1}{4^{t}}-\frac{2}{15} \frac{1}{(-8)^{t}}\right. \\
& \left.+(i+k)\left(\frac{1}{5} \frac{1}{2^{t}}-\frac{1}{3} \frac{1}{4^{t}}+\frac{2}{15} \frac{1}{(-8)^{t}}\right)+i k \frac{1}{4^{t}}\right\}, \\
& \xi_{b-1: 11}(i i, h k)=i h k\left\{\frac{2}{5} \frac{1}{2^{t}}-\frac{2}{3} \frac{1}{4^{t}}+\frac{4}{15} \frac{1}{(-8)^{t}}+i \frac{2}{4^{t}}\right\} \text {, } \\
& { }_{s_{t-1 \mid 11}}(i j, i j)=i j\left\{\boldsymbol{R}^{\frac{4+4 \sqrt{5}}{5} \omega^{t}-\frac{8}{5} \frac{1}{2^{t}}+\frac{8}{15} \frac{1}{4^{t}}+\frac{4}{15(-8)^{t}} .}\right. \\
& \left.+(i+j)\left(\frac{8}{5} \frac{1}{2^{t}}-\frac{4}{3}-\frac{1}{4^{t}}-\frac{4}{15}-\frac{1}{(-8)^{t}}\right)+i j \frac{4}{4^{t}}\right\}, \\
& \mathfrak{s}_{t-1 \mid 11}(i j, i k)=i j k\left\{\frac{8}{5} \frac{1}{2^{t}}-\frac{4}{3} \frac{1}{4^{t}}-\frac{4}{15} \frac{1}{(-8)^{t}}+i \frac{4}{4^{t}}\right\} \text {, } \\
& s_{t-1 \mid 11}(i j, h k)=4 i j h k-\frac{1}{4^{i}} \text {. }
\end{aligned}
$$

In case $\mu=1<\nu$, we get the following formula:
$\mathfrak{F}_{t-1 \mid 12}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$

$$
=\bar{A}_{(11 ; 0)_{t-1} \mid 1}\left(\xi_{1} \eta_{1}\right) \bar{A}_{\xi_{2} \eta_{2}}+2^{-\nu+2}\left\{\xi_{t-1 \mid 12}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)-\bar{A}_{(11 ; 0)_{t-1} 11}\left(\xi_{1} \eta_{1}\right) \bar{A}_{\xi_{2} \eta_{2}}\right\}
$$

Hence, it is sufficient to determine the values of $z_{t-1 \mid 12}$. They will be set out in the following lines:

$$
\begin{aligned}
& s_{t-1 \mid 12}(i i, i i)=i^{2}+i^{2}(1-i)\left\{-\boldsymbol{R} \frac{15+7 \sqrt{5}}{10} \omega^{t}+\frac{1}{2} \frac{1}{2^{t}}-i \frac{1}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i i, i k)=i k+i k\left\{-\boldsymbol{R} \frac{15+7 \sqrt{ } 5}{10} \omega^{t}+\frac{1}{2} \frac{1}{2^{t}}+i\left(\boldsymbol{R} \frac{10+4 \sqrt{5}}{5} \omega^{t}-2_{2}\right)+i^{2} \frac{2}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i i, k k)=i k^{2}\left\{\boldsymbol{R} \frac{5+\sqrt{5}}{10} \omega^{t}-\frac{1}{2} \frac{1}{2^{t}}+i \frac{1}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i i, h k)=i h k\left\{\boldsymbol{R} \frac{5+\sqrt{5}}{5} \omega^{t}-\frac{1}{2^{t}}+i \frac{2}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i j, i i)=i^{3} j\left\{\boldsymbol{R}^{5+3 \sqrt{5}} \frac{5}{5}-\omega^{t}-\frac{1}{2^{t}}+i \frac{2}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i j, i j)=i j\left\{(i+j)\left(\boldsymbol{R} \frac{5+3 \sqrt{5}}{5} \omega^{t}-\frac{1}{2^{t}}\right)+i j \frac{4}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i j, i k)=i j k\left\{\boldsymbol{R}^{5+3 \sqrt{5}} \omega^{t}-\frac{1}{2^{t}}+i \frac{4}{2^{t}}\right\}, \\
& s_{t-1 \mid 12}(i j, k k)=i j k^{2} \frac{2}{2^{t}}, \\
& s_{t-1 \mid 12}(i j, h k)=i j h k \frac{4}{2^{t}},
\end{aligned}
$$

In case $\mu, \nu>1$ with $\lambda=\mu+\nu-1$, we get the following formula:

$$
\mathfrak{\Xi}_{t-1 \mid \mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\bar{A}_{\xi_{1} \eta_{11}} \bar{A}_{\xi_{2} \eta_{2}}+2^{-\lambda+3}\left\{\tilde{\xi}_{t-1 \mid 22}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)-\bar{A}_{\xi_{1} \eta_{1}} \bar{A}_{\xi_{2} \eta_{2}}\right\} .
$$

Hence, it suffices to determine the values of \mathfrak{g}_{t-122}, which are set out as follows:

$$
\begin{aligned}
& s_{t-1 \mid 22}(i i, i i)=i^{3}-i^{3}(1-i) \boldsymbol{R}^{5+2 \sqrt{5}} \omega^{t}, \\
& s_{t-1 \mid 22}(i i, i k)=i^{3} k-i^{2} k(1-2 i) \boldsymbol{R} \frac{5+2 \sqrt{5}}{5} \omega^{t}, \\
& s_{t-1 \mid 22}(i i, k k)=i^{2} k^{2} \boldsymbol{R}^{5+\frac{5 \sqrt{5}}{5} \omega^{t},} \\
& s_{t-1 \mid 22}(i i, h k)=2 i^{2} h k \boldsymbol{R}^{5+2 \sqrt{5}} \omega^{t}, \\
& s_{t-1 \mid 22}(i j, i j)=i j(i+j)-i j(i+j-4 i j) \boldsymbol{R}^{5+2 \sqrt{5}} \omega^{t}, \\
& s_{t-1 \mid 22}(i j, i k)=i j k-i j k(1-4 i) \boldsymbol{R}^{5+2 \sqrt{5}} \omega^{t}, \\
& s_{t-1 \mid 22}(i j, h k)=4 i j h k \boldsymbol{R}^{5+2 \sqrt{ } 5} \frac{5}{5} \omega^{t} .
\end{aligned}
$$

7. Limit behaviors of the probabilities

Most of the expressions derived in the present chapter involve a consanguineous generation-number t as a parameter and are of a form linear in $1,2^{-t}, 4^{-t},(-4)^{-t},(-8)^{-t}, \omega^{t}$ and $\tilde{\omega}^{t}$. Since

$$
\omega=\frac{1+\sqrt{5}}{4}=0.809 \cdots \quad \text { and } \quad \tilde{\omega}=\frac{1-\sqrt{5}}{4}=-0.309 \cdots,
$$

any term factored by ω^{t} majorates ultimately those factored by others except 1 , while a term factored by ω^{t} itself tends to zero as $t \rightarrow \infty$.

A brief account will be given with respect to asymptotic behaviors of expressions involving ω^{t}. We introduce sequences of rational numbers, $\left\{c_{t}\right\}$ and $\left\{d_{t}\right\}$, defined by

$$
\omega^{t}=c_{t}+d_{t} \sqrt{5} \quad(t=0,1,2, \ldots)
$$

As readily seen, they are given by

$$
c_{t}=\frac{1}{2}\left(\omega^{t}+\tilde{\omega}^{t}\right), \quad d_{s}=\frac{1}{2 \sqrt{5}}\left(\omega^{t}-\tilde{\omega}^{t}\right)
$$

and satisfy the recurrence relations

$$
c_{t}=\frac{1}{4}\left(c_{t-1}+5 d_{t-1}\right), \quad d_{t}=\frac{1}{4}\left(c_{t-1}+d_{t-1}\right) .
$$

If we separate the quantities c 's and d 's from the last system, we obtain difference equations of the second order satisfied by them, i. e.

$$
c_{t}=\frac{1}{2} c_{t-1}+\frac{1}{4} c_{t-2}, \quad d_{t}=\frac{1}{2} d_{t-1}+\frac{1}{4} d_{t-2} .
$$

Though the last two equations are of the same form, the initial conditions are different. We may put here

$$
c_{-1}=-1, \quad c_{0}=1 ; \quad d_{-1}=1, \quad d_{0}=0 ;
$$

the last equations are then valid for $t \geqq 1$.
For sufficiently lärge t, we have asymptotically

$$
c_{t} \sim \frac{1}{2} \omega^{t}, \quad \quad d_{t} \sim \frac{1}{2 \sqrt{5}} \omega^{t} .
$$

Consequently, for any rational numbers p and q, we get, for sufficiently large t, an asymptotic relation

$$
\boldsymbol{R}(p+q \sqrt{5}) \omega^{t}=p c_{t}+5 q d_{t} \sim \frac{1}{2}(p+q \sqrt{5}) \omega^{t} .
$$

Now, the asymptotic behaviors, as $t \rightarrow \infty$, of several probabilities derived in the present chapter can be readily concluded from their own expressions. For instance, we get for a limit probability defined by

$$
\mathfrak{e}_{\infty}\left(\alpha \beta, \gamma \delta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \lim _{t \rightarrow \infty} \mathfrak{e}_{t}\left(\alpha \beta, \gamma \delta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

the following values:

$$
\begin{array}{ll}
\mathfrak{e}_{\infty}(i i, i i ; i i, i i)=1, & \mathfrak{e}_{\infty}(i i, i k ; i i, i i)=\frac{3}{4}, \\
\mathfrak{e}_{\infty}(i i, i k ; k k, k k)=\frac{1}{4}, & \mathrm{e}_{\times}(i i, k k ; i i, i i)=\frac{1}{2}, \\
\mathfrak{e}_{\infty}(i k, i k ; i i, i i)=\frac{1}{2} . &
\end{array}
$$

The values for combinations other than those essentially exhausted here are equal to zero.

The remaining limit probabilities such as

$$
\begin{aligned}
& \mathrm{e}_{\infty \mid n}\left(\alpha \beta, \gamma \delta ; \xi_{\eta}\right), \quad \mathfrak{f}_{\infty \mid n}\left(\alpha \beta ; \xi_{\eta}\right), \quad \mathfrak{f}_{\infty(\mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \bar{A}_{(11 ; 0, \infty \mid n}\left(\xi_{\eta}\right), \quad \quad \bar{\xi}_{\infty \mid \mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2 \eta_{2}}\right) \quad \text { etc. }
\end{aligned}
$$

can also be treated simply. For instance, we get

$$
\bar{A}_{(11 ; 0 ; \infty \mid 1}(i i)=i, \quad \bar{A}_{\{11 ; 0><11}(i j)=0 .
$$

Thus, repetition of the most extreme consanguineous marriages causes the disappearance of any heterozygous type. Moreover, the frequency of any homozygous type in the limit distribution coincides just with that of its constituting gene.

Corrections to Yûsaku Komatu and Han Nishimiya:
"Probabilities on Inheritance in Consanguineous Families. VII"
(Proc. Japan Acad., 30, No. 3 (1954))
Corrections should be made to the values of

$$
\mathfrak{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum S(\alpha \beta ; a b) \kappa\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

listed in the above paper (pp. 214-242).
In fact, the values given in the paper were those for the
quantity $\frac{1}{4} S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)-\vartheta\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$. The corrected values for $\mathfrak{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ are listed in the following lines:*)
$\mathfrak{Y}(i i ; i i, i i)=\frac{1}{16} i(1-i)(1+i)(1-2 i), \quad \vartheta(i i ; i i, i g)=-\frac{1}{8} i^{2} g(1-2 i)$,
$\mathfrak{Y}(i i ; i i, g g)=-\frac{1}{16} i g^{2}(1-2 i), \quad \exists(i i ; i i, f g)=-\frac{1}{8} i f g(1-2 i)$,
$\mathfrak{Y}(i i ; i k, i k)=\frac{1}{16} k\left(1-4 i+k+i^{2}-3 i k+8 i^{2} k\right)$,
$\mathfrak{Y}(i i ; i k, k k)=-\frac{1}{16} k^{2}(1-i+k-4 i k)$,
$\mathfrak{Y}(i i ; i k, i g)=\frac{1}{16} k g\left(1-3 i+8 i^{2}\right), \quad \mathfrak{}(i i ; i k, k g)=-\frac{1}{16} k g(1-i+2 k-8 i k)$,
$\mathfrak{Y}(i i ; i k, g g)=-\frac{1}{16} k g^{2}(1-4 i), \quad \mathfrak{Y}(i i ; i k, f g)=-\frac{1}{8} k f g(1-4 i)$,
$\vartheta(i i ; k k, k k)=-\frac{1}{16} k^{2}(1+k)(1-2 k)$, $\vartheta(i i ; k k, k g)=\frac{1}{16} k^{2} g(1+4 k)$,
$\mathfrak{Y}(i i ; k k, g g)=\frac{1}{8} k^{2} g^{2}$, $\vartheta(i i ; k k, f g)=\frac{1}{4} k^{2} f g$,
$\mathfrak{Y}(i i ; h k, h k)=-\frac{1}{16} h k(2-h-k-8 h k), \quad \mathfrak{Y}(i i ; h k, k g)=\frac{1}{16} h k g(1+8 k)$,
$\mathfrak{V}(i i ; h k, f g)=\frac{1}{2} h k f g$;
$\mathfrak{Y}(i j ; i i, i i)=\frac{1}{32} i(1+i)(1-2 i)^{2}, \quad 习(i j ; i i, i j)=-\frac{1}{32} i^{2}(1+i+j-8 i j)$,
$\vartheta(i j ; i i, j j)=-\frac{1}{32} i j(i+j-4 i j), \quad \vartheta(i j ; i i, i g)=-\frac{1}{32} i^{2} g(1-8 i)$,
$\mathfrak{Y}(i j ; i i, j g)=-\frac{1}{32} i g(i+2 j-8 i j), \quad$ Ə $(i j ; i i, g g)=-\frac{1}{32} i g^{2}(1-4 i)$,
$\mathfrak{Y}(i j ; i i, f g)=-\frac{1}{16} i f g(1-4 i)$,
$\mathfrak{Y}(i j ; i j, i j)=\frac{1}{32}\left(i+j+i^{2}+j^{2}-8 i j-2 i^{2} j-2 i j^{2}+16 i^{2} j^{2}\right)$,
$\mathfrak{Y}(i j ; i j, i g)=-\frac{1}{32} g\left(i-j+2 i^{2}-2 i j-16 i^{2} j\right)$,
$\mathfrak{Y}(i j ; i j, g g)=-\frac{1}{32} g^{2}(i+j-8 i j), \quad \vartheta(i j ; i j, f g)=-\frac{1}{16} f g(i+j-8 i j)$, $\mathfrak{Y}(i j ; i k, i k)=\frac{1}{3} 1 k\left(1-6 i+k+2 i^{2}-2 i k+16 i^{2} k\right)$, $\mathfrak{V}(i j ; i k, j k)=-\frac{1}{32}(i+j-2 i j+2 i k+2 j k-16 i j k)$,
$\mathfrak{y}(i j ; i k, k k)=-\frac{1}{3.2} k^{2}(1-2 i+k-8 i k), \quad \mathfrak{Y}(i j ; i k, i g)=\frac{1}{32} k g\left(1-2 i+16 i^{2}\right)$, $\mathfrak{Y}(i j ; i k, j g)=-\frac{1}{16} k g(i+j-8 i j), \mathfrak{Y}(i j ; i k, k g)=-\frac{1}{32}(1-2 i+2 k-16 i k)$, $\mathfrak{Y}(i j ; i k, g g)=-\frac{1}{32} k g^{2}(1-8 i), \quad \mathfrak{Y}(i j ; i k, f g)=-\frac{1}{16} k f g(1-8 i)$.

