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(Comm. by Z. SUETUNA, M.J.A., July 12, 1954)

In a lecture at University o Chicago (c. 1), A. Weil develop-
ed the theory of algebraic fiber varieties. Among others, he
treated fiber varieties over a non-singular algebraic curve, which
have he projective straight line as fibers and the group of affiae
transformations as the structure group. He classified these fiber
varieties in a purely algebraic way (and in the case of a universal
domain of any characteristic). Ia this note we shall show that his
second invariant admits a simple and natural interpretation, as far
as complex analytic fiber bundles are concerned.

1. Let V be a compact complex analytic manifold. A fiber
bundle to be considered here is defined in erms of a finite open
covering [U} of V, and a system of holomorphic mappings s: from
UU into G; the group of he affine transformations of a complex
affine straight line C. Here the mappings s: satisfy the relation

1 s.s s in UUU.
If we write

s a:+b for e Q
then a and b are holomorphic functions in UU and

2 { a a a

a: b +b b
while may be described in terms of "coordinates (z, )(z U
and C), with the relation

z=z’ e U
( 3 (z, )(z’, ) if and only if

=a(z)+ b.;(z).
Two systems s.-(a,, b,) and s’- b’: (a, :,) define the same bundle
if and only if

ts:t,
where each t:(c, d) is a holomorphic mapping of U into G. In
terms of a, b, c and d, fhis condition is expressed as

ak ak ck

If ) is defined by (a, b,7), fhen (2) shows that (a) defines a
complex line bundle i (abbreviation: C.L.B.) in the sense of
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K. Kodaira. (Cf. [2].) Then (4) shows that is uniquely determined
by . .I shall be called, after Weil, the C.L.B. subordinate o

In order that and should be equivalent, it is clear that
the subordinate C.L.B.’s must be equivalent. Hence we assume
that and are defined by (a:, b.) and (a., b) respectively, and
seek or a property which distinguishes

The condition (4) becomes, in this case,
5 b--c-(ad+b-d),

where c is a complex constant, 0.

2. We observe that if 3 has a holomorphic cross section, then
reduces to its subordinate C.L.B. In fact, a holomorphic cross

section is determined by a system p=(cp) of holomorphic functions
(p in U, with the property

cp.(z) a(z)(z) + b(z).
Then by a transformation of the origin

in each fiber, we see that is reduced to
On the other hand, since the fibers are, topologically, nothing

but the real Euclidean space of dimension 2, there exist always

continuous (and hence differentiable) cross sections.
Take a C cross section a-(a), then

a(z, 5) a(z) a(z, ) + b(z),
and therefore

( 6 ) d"a=a.d"a,
where d denotes the exterior differentiation with respect to
This shows that the system of C-forms 7-(da) is a differential
form with coefficients in . (Cf.

Actually, 7 is a d"-closed orm, and if we take another cross
section a=(a) Of , then it is clear that

a=a+B with B
Hence

v 7 + dB.
This shows that the system (a;,, b;) determines an element

of H’(I); the d-cohomology group of C-forms on V with coef-
ficients in and of type (0, 1).

Conversely, let e H.(-) be given and let v=(v.;) be a form
in the class . Then

d v=0 in U;.
If we take a refinement [Vz} of the covering {U}, and associate
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to each an index j such that VzCU, then we can speak of az
or / instead of a:, or /. If IVy} is sufficiently fine, we can find
C-functions az such that

da-7 in V.
We put

then d"b=O and b is holomorphie in V V,, and it is easy to
see that the system (az, b) satisfies (2). Hence it defines a , to
which is subordinate. It is also clear that the class is the
one which is determined by .

Finally, if we replace (a, b) by another equivalent system
(a, b), then by (5)

We then replace the system (a.) of C-functions by (), where

then
’- .+b

and
ot: C-

Hence if we take another expression of 93, the corresponding
element in H’(i) is multiplied by a non-zero constant.

The converse being true, we get

THEOREM. Let . be a C.L.B. over a compact complex analytic
manifold V. Then the fiber bundles of type (3), to which . is
subordinate, are in one to one correspondence with the points of a
projective space P, whose representative cone is H’(.;) (with the
only one exception of $ itself).

We shall call the point of P corresponding to , the second
invariant of .

3. Now we assume that V is an algebraic variety in a projective
space. Then, by a theorem of K. Kodaira and D. C. Spencer (cf.
[3, [5]), a C.L.B. 1 over V can be defined by a divisor D of V.
In other words, there is a divisor D and a system of local equations
R.; of D in U, such that
7 a=R/R.

When a bundle is given by (%, b), we put
( 8 h=b/R.:,
then each h. is a meromorphie function in U,-, U, with (h)+D >-0.
From (2), it follows that

+h.= 0,
( 9

h+h+.=0 in U,,-,UU.
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To show that our second invariant of is identical with Well’s
one in the case of a curve, we proceed a.s follows"

Consider a d’-closed (0, 1)-form 7=(/) with coefficients in
and a d’-closed (m,m-1)-form -() with coefficients in -?,
where m is the dimension of V. We define a product (7,
and by

(10) (, )=fv.
Since 7a7 and o:a.%, this is well defined.

If 7 or is d’-total, then we have (%)-0. In fact, if 7.
d"B with B.=a, then

because BA; is a form on the whole V.
Hence (10) defines the product o the classes of 7 and and

thus defines the product between H’([) and H’-(-?i).
Actually, these two modules are in duality by the relation (10),

because, by the theory of harmonic integrals, we can set up an
isomorphism

in such a way that t,+)>0 for 50. (Cf. [4, E5.)
Hence H.()can be considered as he space o linear functions on
H,-(_).

Now, we assume that V is a curve F, U; are open sets
Zariski topology and a and b are rational functions on F. Then h
are also rational functions and ; are o type (1, 0). Since

are holomorphic differentials in U; and R:R is a meromorphic
differential on the whole F, which we denote by the letter . It
is clear that is in the space (-D) of differentials with ()+D0.
It is also clear that H,(gI) and (-D) are isomorphic by

Let (a) be a C cross section of defined by (a, b;). Let
Uo=F-P be the intersection o U; and take an open set U
for each k, with P e U. Then

=lim f 0o,
$0

where S(k) denotes a geodesic circle of radius , with center P.
In the neighborhood of P, we have
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therefore
ao-aoa+ bo, ,o a% and ao=Ro/R,

The first term on the right hand side gives, when e tends to O,
he limit O, and the second gives

Hence

ho. (..,) f ho,-2rV- 1 Rese(ho).

((d"a;), ) f d’%A;--21/-- 1 Rese(ho),

this shows that our second invariaat (d’%) is the same as Weil’s
one.

4. Returning to the general case of any dimension m, we can
express the second invariant explicitly in terms of R and h (or
R and b).

Take a partition of unity 1 =,f, subordinate to the covering

{U], then

f a"--f.(’%)
=V,. faf>-,. faf=-,,f".V V

For a point P of V, let P e Uo...U and P, U for j @ j,
,hen in the neighborhood of P we have

a--ao%+bo =ao
Now d’fhzo does not depend on Jo, and hence is a differential

orm on the whole V (with singularities). In fact

d fhoh O.

then 7 is C in U and 7=() is a d"-closed (0,1)-form with
coefficients in l. The above formula shows that ((d’@, ) (7, ),
hence

7 (d’%).
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