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114. On a Certain Type of Analytic Fiber Bundles

By Shigeo NAKANO
Mathematical Institute, Kyoto University
(Comm. by Z. SUETUNA, M.J.A., July 12, 1954)

In a lecture at University of Chicago (cf. [1]), A. Weil develop-
ed the theory of algebraic fiber varieties. Among others, he
treated fiber varieties over a non-singular algebraic curve, which
have the projective straight line as fibers and the group of affine
transformations as the structure group. He classified these fiber
varieties in a purely algebraic way (and in the case of a universal
domain of any characteristic). In this note we shall show that his
second invariant admits a simple and natural interpretation, as far
as complex analytic fiber bundles are concerned.

1. Let V be a compact complex analytic manifold. A fiber
bundle B to be considered here is defined in terms of a finite open
covering {U;} of ¥V, and a system of holomorphic mappings s; from
U;~U, into G; the group of the affine transformations of a complex
affine straight line C. Here the mappings s, satisfy the relation
(1) S S =Sy in U;~U~U,.

If we write

8- C=aul +by for (e C,
then a, and by, are holomorphic functions in U;~U, and
Qg Qg = Ay
(2) {a’jlc'blcl +03=by,
while B may be described in terms of ‘‘coordinates’ (2,¢;)(z ¢ U;
and ;e C), with the relation
2=z € U;~Us
C= (@) +bu(2)-
Two systems s;=(ay, by) and si=(a%,b) define the same bundle
if and only if

(8) (2, C~@, &) if and only if {

Siu=1;'8utr,
where each ¢;=(c;, d;) is a holomorphic mapping of U; into G. In
terms of a, b, ¢ and d, this condition is expressed as
3 (e
= C;  (audy +by—d;).
If ¥ is defined by (a4,b,), then (2) shows that (a;) defines a
complex line bundle A (abbreviation: C.L.B.) in the sense of
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K. Kodaira. (Cf. [2].) Then (4) shows that % is uniquely determined
by B. U shall be called, after Weil, the C.L.B. subordinate to 3.
In order that B and B’ should be equivalent, it is clear that
the subordinate C.L.B.’s must be equivalent. Hence we assume
that B and B’ are defined by (ay, by) and (ay, b)) respectively, and
seek for a property which distinguishes B from %’.
The condition (4) becomes, in this case,

(5) =" @udy+by—dy),
where ¢ is a complex constant, ==0.

2. We observe that if B has a holomorphic cross section, then
B reduces to its subordinate C.L..B. In fact, a holomorphic cross
section is determined by a system ¢=(;) of holomorphic functions
@; in U,, with the property

@i(2)=au(2)P(R) +bu(2).
Then by a transformation of the origin
G~ G— i)
in each fiber, we see that B is reduced to .

On the other hand, since the fibers are, topologically, nothing
but the real Euclidean space of dimension 2, there exist always
continuous (and hence differentiable) cross sections.

Take a C= cross section a=(a;), then

aj(z: E) = a‘jk(z) * alc(z) E) + bjk(z>:
and therefore
(6) d"a;=ay-d"a,
where d” denotes the exterior differentiation with respeet to z.
This shows that the system of C=-forms y=(d"«;) is a differential
form with coefficients in €. (Cf. [2].)

Actually, v is a d’-closed form, and if we take another cross

section o/ =(a}) of B, then it is clear that
agy=a;+B;  With B;=a, s
Hence
v'=9+d"B.

This shows that the system (ay,b;) determines an element ¥
of H®'A); the d”-cohomology group of C>-forms on V with coef-
ficients in % and of type (0, 1).

Conversely, let e H*'(U) be given and let v=(y;) be a form
in the class 4. Then

d"y;=0 in U,.
If we take a refinement {V,} of the covering {U;}, and associate
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to each 4 an index j such that V,CU, then we can speak of a,,
or v, instead of ay or v, If {V,} is sufficiently fine, we can find
C~>-functions «, such that
d"a =1, in V.
We put
b%u =0 A dy,
then d”b,,=0 and b,, is holomorphic in V,~V,, and it is easy to
see that the system (a,,, b,,) satisfies (2). Hence it defines a B, to
which U is subordinate. It is also clear that the class ¥ is the
one which is determined by .
Finally, if we replace (a3, b;) by another equivalent system
(@, bY), then by (5)
b=c""(ayd, +by—d;).
We then replace the system (a;) of C*-functions by (o}), where
=N~ dy),
then
Ay =0y af,+ bl
and
d"o=c"'d"a;.
Hence if we take another expression of 3B, the corresponding
element in H*'() is multiplied by a non-zero constant.
The converse being true, we get

THEOREM. Let A be a C.L.B. over a compact complex analytic
manifold V. Then the fiber bundles of type (8), to which U is
subordinate, are in one to one correspondence with the points of a
projective space P, whose representative cone is H* () (with the
only one exception of U itself).

We shall call the point of P corresponding to 2, the second
invariant of B.

3. Now we assume that V is an algebraic variety in a projective
space. Then, by a theorem of K. Kodaira and D. C. Spencer (cf.
(3], [5]), a C.L.B. % over V can be defined by a divisor D of V.
In other words, there is a divisor D and a system of local equations
R; of D in U, such that

(7) az=R;/R,.
When a bundle 3 is given by (aj, by), we put
( 8 ) kjlc:bjlc/ Rp

then each 4, is a meromorphic function in U;~U,, with (&;)+D >O0.
From (2), it follows that

Byt by =0,
(9) { ./Ic+ ®J O )

kjk+kkl+hlj20 mn Ujf\ Uk" Ul’
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To show that our second invariant of B is identical with Weil’s
one in the case of a curve, we proceed as follows:

Consider a d”-closed (0,1)-form y=(y;) with coeflicients in A
and a d’-closed (m,m—1)-form o=(w;) with coefficients in —2,
where m is the dimension of V. We define a product {v,w) of v
and o by

(10) @0y = [ vino.

Since v;=a,y, and o;=az'w,, this is well defined.
If v or o is d’-total, then we have (v, )=0. In fact, if «;
:d”Bj With szaj,cek, then

{7, ) :f d"(Bj/\wj):f d(B;nw;) =0,
v Vv

because B;pw; is a form on the whole V.

Hence (10) defines the product of the classes of v and » and
thus defines the product between H**(A) and H™™ '(—A).

Actually, these two modules are in duality by the relation (10),
because, by the theory of harmonic integrals, we can set up an
isomorphism

H>YA) 5 §—— 7§+ e H™™}(—A)
in such a way that <(%,%*) >0 for ¥=0. (Cf. [4], [5].)
Hence H®'() can be considered as the space of linear functions on
Hm,m—l(__su).

Now, we assume that V is a curve I', U; are open sets in
Zariski topology and a; and b, are rational functions on I". Then A
are also rational functions and w; are of type (1,0). Since d”w;=0,
w; are holomorphic differentials in U; and R;0;= R,w, is a meromorphic
differential on the whole [°, which we denote by the letter w. It
is clear that @ is in the space B(— D) of differentials with (&)+D>-0.
It is also clear that H*'(A) and W(— D) are isomorphic by H*'(A)
3 (w0;) <« Ryw;=o ¢ B(—D).

Let (a;) be a C*= cross section of ¥ defined by (a;,b,). Let
U(,=F—Z/CP & be the intersection of U; and take an open set U,

for each k, with P,ec U,. Then
[d”a,;/\wj:]eizrnlf d(oywo)

XS0k
:limz [ aoa)o,
e>0 Kk «
0S¢k
where S (k) denotes a geodesic circle of radius ¢, with center P,.
In the neighborhood of P, we have
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=AW +byy,  ©e=05'w, and a,=R/R,,
therefore
Awo= f g+ f (bor/ o)z
SR 2SR Sk

The first term on the right hand side gives, when ¢ tends to 0,
the limit 0, and the second gives

Frog- (Ryor) = f By =2V —1 Respe(hod).
FRRG) aS¢Ch)
Hence

((d”!lj)y (l-)> :f d”ajA &)J:27TI/— 1 Ek Rest(h(y‘a),
r

this shows that our second invariant (d”«;) is the same as Weil’s
one.

4. Returning to the general case of any dimension m, we can
express the second invariant explicitly in terms of E; and 2, (or
R; and b;,).

Take a partition of unity 1=3)f;, subordinate to the covering
{U:i}) then

fd"ajA&)j:foj’(d"aj/\wj)
v Ty

:%‘,fd(f,-ajwj)~zj}fdf,-/\ajwj:—zj_‘,fd”fj/\a;oj.

For a point P of V, let PeU;~---~U, and P ¢ U, for j =3,
then in the neighborhood of P we have

— — —1
%5 = O 5%+ by‘pjo) @5, = Q50 B

Ej d"finaw;= Z}L A 5 B0, + 2}; A" 5 N30 = g d"finho.

Now >1d"fph;;, does not depend on j,, and hence is a differential
form on the whole V (with singularities). In fact

230" by = 23 A" fihy, =33 0" f g, =0

J

Put Vo= — By @ f,

then v; is C* in U; and v=(y;) is a d"-closed (0,1)-form with
coefficients in A. The above formula shows that {(d"«;), ®) = {y, ),
hence

v~ (d"a;).
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