542 [Vol. 30,

114. On a Certain Type of Analytic Fiber Bundles

By Shigeo NAKANO

Mathematical Institute, Kyoto University (Comm. by Z. SUETUNA, M.J.A., July 12, 1954)

In a lecture at University of Chicago (cf. [1]), A. Weil developed the theory of algebraic fiber varieties. Among others, he treated fiber varieties over a non-singular algebraic curve, which have the projective straight line as fibers and the group of affine transformations as the structure group. He classified these fiber varieties in a purely algebraic way (and in the case of a universal domain of any characteristic). In this note we shall show that his second invariant admits a simple and natural interpretation, as far as complex analytic fiber bundles are concerned.

1. Let V be a compact complex analytic manifold. A fiber bundle \mathfrak{B} to be considered here is defined in terms of a finite open covering $\{U_j\}$ of V, and a system of holomorphic mappings s_{jk} from $U_j \cap U_k$ into G; the group of the affine transformations of a complex affine straight line C. Here the mappings s_{jk} satisfy the relation

$$(1)$$
 $s_{ik} \cdot s_{kt} = s_{it}$ in $U_i \cap U_k \cap U_l$

If we write

$$s_{jk} \cdot \zeta = a_{jk}\zeta + b_{jk}$$
 for $\zeta \in C$

then a_{jk} and b_{jk} are holomorphic functions in $U_j \cap U_k$ and

$$\left\{egin{align*} a_{jk}\!\cdot\!a_{kl}\!=\!a_{jl} \ a_{jk}\!\cdot\!b_{kl}\!+\!b_{jk}\!=\!b_{jl}, \end{array}
ight.$$

while \mathfrak{B} may be described in terms of "coordinates" (z, ζ_j) $(z \in U_j)$ and $\zeta_j \in \mathbb{C}$, with the relation

$$(3) (z,\zeta_j) \sim (z',\zeta_k) \text{if and only if } \begin{cases} z=z' \in U_j \cap U_k \\ \zeta_j=a_{jk}(z)\zeta_k+b_{jk}(z). \end{cases}$$

Two systems $s_{jk}=(a_{jk},b_{jk})$ and $s'_{jk}=(a'_{jk},b'_{jk})$ define the same bundle if and only if

$$s'_{jk} = t_j^{-1} s_{jk} t_k,$$

where each $t_j=(c_j, d_j)$ is a holomorphic mapping of U_j into G. In terms of a, b, c and d, this condition is expressed as

$$\begin{cases} a'_{jk} = c_j^{-1} \cdot a_{jk} \cdot c_k \\ b'_{jk} = c_j^{-1} (a_{jk} d_k + b_{jk} - d_j). \end{cases}$$

If \mathfrak{B} is defined by (a_{jk}, b_{jk}) , then (2) shows that (a_{jk}) defines a complex line bundle \mathfrak{A} (abbreviation: C.L.B.) in the sense of

K. Kodaira. (Cf. [2].) Then (4) shows that \mathfrak{A} is uniquely determined by \mathfrak{B} . \mathfrak{A} shall be called, after Weil, the C.L.B. subordinate to \mathfrak{B} .

In order that \mathfrak{B} and \mathfrak{B}' should be equivalent, it is clear that the subordinate C.L.B.'s must be equivalent. Hence we assume that \mathfrak{B} and \mathfrak{B}' are defined by (a_{jk}, b_{jk}) and (a_{jk}, b'_{jk}) respectively, and seek for a property which distinguishes \mathfrak{B} from \mathfrak{B}' .

The condition (4) becomes, in this case,

$$(5) b_{jk}' = c^{-1}(a_{jk}d_k + b_{jk} - d_j),$$

where c is a complex constant, $\neq 0$.

2. We observe that if \mathfrak{B} has a holomorphic cross section, then \mathfrak{B} reduces to its subordinate C.L.B. In fact, a holomorphic cross section is determined by a system $\varphi = (\varphi_j)$ of holomorphic functions φ_j in U_j , with the property

$$\varphi_{i}(z) = a_{ik}(z)\varphi_{k}(z) + b_{ik}(z).$$

Then by a transformation of the origin

$$\zeta_j \to \zeta_j - \varphi_j(z)$$

in each fiber, we see that \mathfrak{B} is reduced to \mathfrak{A} .

On the other hand, since the fibers are, topologically, nothing but the real Euclidean space of dimension 2, there exist always continuous (and hence differentiable) cross sections.

Take a C^{∞} cross section $\alpha=(a_i)$, then

$$a_{j}(z,\bar{z}) = a_{jk}(z) \cdot a_{k}(z,\bar{z}) + b_{jk}(z),$$

and therefore

$$d''a_{j}=a_{jk}\cdot d''a_{k},$$

where d'' denotes the exterior differentiation with respect to \bar{z} . This shows that the system of C^{∞} -forms $\gamma = (d''a_j)$ is a differential form with coefficients in \mathfrak{A} . (Cf. [2].)

Actually, γ is a d''-closed form, and if we take another cross section $\alpha' = (\alpha'_i)$ of \mathfrak{B} , then it is clear that

$$\alpha_j' = \alpha_j + \beta_j$$
 with $\beta_j = a_{jk} \cdot \beta_k$.

Hence

$$\gamma' = \gamma + d''\beta$$
.

This shows that the system (a_{jk}, b_{jk}) determines an element $\tilde{\gamma}$ of $H^{0,1}(\mathfrak{A})$; the d''-cohomology group of C^{∞} -forms on V with coefficients in \mathfrak{A} and of type (0,1).

Conversely, let $\tilde{\gamma} \in H^{0,1}(\mathfrak{A})$ be given and let $\gamma = (\gamma_j)$ be a form in the class $\tilde{\gamma}$. Then

$$d''\gamma_j=0$$
 in U_j .

If we take a refinement $\{V_{\lambda}\}$ of the covering $\{U_{i}\}$, and associate

to each λ an index j such that $V_{\lambda} \subset U_j$, then we can speak of $a_{\lambda\mu}$ or γ_{λ} instead of a_{jk} or γ_{j} . If $\{V_{\lambda}\}$ is sufficiently fine, we can find C^{∞} -functions a_{λ} such that

$$d''\alpha_{\lambda} = \gamma_{\lambda}$$
 in V_{λ} .

We put

$$b_{\lambda u} = \alpha_{\lambda} - a_{\lambda u} \alpha_{u}$$

then $d''b_{\lambda\mu}=0$ and $b_{\lambda\mu}$ is holomorphic in $V_{\lambda} \cap V_{\nu}$, and it is easy to see that the system $(a_{\lambda\mu},b_{\lambda\mu})$ satisfies (2). Hence it defines a \mathfrak{B} , to which \mathfrak{A} is subordinate. It is also clear that the class $\tilde{\gamma}$ is the one which is determined by \mathfrak{B} .

Finally, if we replace (a_{jk}, b_{jk}) by another equivalent system (a_{jk}, b'_{jk}) , then by (5)

$$b'_{jk} = c^{-1}(a_{jk}d_k + b_{jk} - d_j).$$

We then replace the system (a_j) of C^{∞} -functions by (a'_j) , where

$$a_{j}'=c^{-1}(a_{j}-d_{j}),$$

then

$$\alpha_{j}' = \alpha_{jk} \cdot \alpha_{k}' + b_{jk}'$$

and

$$d''\alpha'_{j} = c^{-1}d''\alpha_{j}$$
.

Hence if we take another expression of \mathfrak{B} , the corresponding element in $H^{0,1}(\mathfrak{A})$ is multiplied by a non-zero constant.

The converse being true, we get

THEOREM. Let \mathfrak{A} be a C.L.B. over a compact complex analytic manifold V. Then the fiber bundles of type (3), to which \mathfrak{A} is subordinate, are in one to one correspondence with the points of a projective space P, whose representative cone is $H^{0,1}(\mathfrak{A})$ (with the only one exception of \mathfrak{A} itself).

We shall call the point of P corresponding to \mathfrak{B} , the second invariant of \mathfrak{B} .

3. Now we assume that V is an algebraic variety in a projective space. Then, by a theorem of K. Kodaira and D. C. Spencer (cf. [3], [5]), a C.L.B. $\mathfrak V$ over V can be defined by a divisor D of V. In other words, there is a divisor D and a system of local equations R_j of D in U_j , such that

 $a_{jk} = R_j / R_k.$

When a bundle \mathfrak{B} is given by (a_{ik}, b_{ik}) , we put

$$(8) h_{jk} = b_{jk}/R_{j},$$

then each h_{jk} is a meromorphic function in $U_j \cap U_k$, with $(h_{jk}) + D > 0$. From (2), it follows that

To show that our second invariant of \mathfrak{B} is identical with Weil's one in the case of a curve, we proceed as follows:

Consider a d''-closed (0,1)-form $\gamma = (\gamma_j)$ with coefficients in \mathfrak{A} and a d''-closed (m,m-1)-form $\omega = (\omega_j)$ with coefficients in $-\mathfrak{A}$, where m is the dimension of V. We define a product $\langle \gamma, \omega \rangle$ of γ and ω by

(10)
$$\langle \gamma, \omega \rangle = \int_{V} \gamma_{j \wedge} \omega_{j}.$$

Since $\gamma_j = a_{jk}\gamma_k$ and $\omega_j = a_{jk}^{-1}\omega_k$, this is well defined.

If γ or ω is d''-total, then we have $\langle \gamma, \omega \rangle = 0$. In fact, if $\gamma_j = d''\beta_j$ with $\beta_j = a_{jk}\beta_k$, then

$$\langle \gamma,\omega
angle = \int_{\mathcal{V}} d^{\prime\prime}(eta_{j}\!\wedge\!\omega_{j}) \!=\! \int_{\mathcal{V}} d(eta_{j}\!\wedge\!\omega_{j}) \!=\! 0,$$

because $\beta_{j} \wedge \omega_{j}$ is a form on the whole V.

Hence (10) defines the product of the classes of γ and ω and thus defines the product between $H^{0,1}(\mathfrak{A})$ and $H^{m,m-1}(-\mathfrak{A})$.

Actually, these two modules are in duality by the relation (10), because, by the theory of harmonic integrals, we can set up an isomorphism

$$H^{\scriptscriptstyle 0,1}(\mathfrak{A})\ni\tilde{\gamma} {\:\longrightarrow\:} \tilde{\gamma}^{\scriptscriptstyle +}\in H^{m,m-1}(-\mathfrak{A})$$

in such a way that $\langle \tilde{\gamma}, \tilde{\gamma}^+ \rangle > 0$ for $\tilde{\gamma} \neq 0$. (Cf. [4], [5].) Hence $H^{0,1}(\mathfrak{A})$ can be considered as the space of linear functions on $H^{m,m-1}(-\mathfrak{A})$.

Now, we assume that V is a curve Γ , U_j are open sets in Zariski topology and a_{jk} and b_{jk} are rational functions on Γ . Then h_{jk} are also rational functions and ω_j are of type (1,0). Since $d''\omega_j=0$, ω_j are holomorphic differentials in U_j and $R_j\omega_j=R_k\omega_k$ is a meromorphic differential on the whole Γ , which we denote by the letter $\overline{\omega}$. It is clear that $\overline{\omega}$ is in the space $\mathfrak{W}(-\boldsymbol{D})$ of differentials with $(\overline{\omega})+\boldsymbol{D} > 0$. It is also clear that $H^{0,1}(\mathfrak{A})$ and $\mathfrak{W}(-\boldsymbol{D})$ are isomorphic by $H^{0,1}(\mathfrak{A}) \ni (\omega_j) \longleftrightarrow R_j\omega_j=\overline{\omega} \in \mathfrak{W}(-\boldsymbol{D})$.

Let (a_j) be a C^{∞} cross section of \mathfrak{B} defined by (a_{jk}, b_{jk}) . Let $U_0 = \Gamma - \sum_k P_k$ be the intersection of U_j and take an open set U_k for each k, with $P_k \in U_k$. Then

$$\begin{split} \int_{\Gamma} d'' \alpha_{j} \wedge \omega_{j} &= \lim_{\epsilon \to 0} \int_{\Gamma - \Sigma S_{\epsilon}(k)} d(\alpha_{0} \omega_{0}) \\ &= \lim_{\epsilon \to 0} \sum_{k} \int_{\partial S_{\epsilon}(k)} \alpha_{0} \omega_{0}, \end{split}$$

where $S_{\varepsilon}(k)$ denotes a geodesic circle of radius ε , with center P_{k} . In the neighborhood of P_{k} , we have

$$a_0 = a_{0k}a_k + b_{0k}$$
, $\omega_0 = a_{0k}^{-1}\omega_k$ and $a_{0k} = R_0/R_k$,

therefore

$$\int_{\partial S_{E}(k)} \alpha_{0} \omega_{0} = \int_{\partial S_{E}(k)} \alpha_{k} \omega_{k} + \int_{\partial S_{E}(k)} (b_{0k}/a_{0k}) \omega_{k}.$$

The first term on the right hand side gives, when ε tends to 0, the limit 0, and the second gives

$$\int_{\partial S_{E}(k)} h_{0k} \cdot (R_{k} \omega_{k}) = \int_{\partial S_{E}(k)} h_{0k} \bar{\omega} = 2\pi \mathcal{V} - 1 \operatorname{Res}_{Pk}(h_{0k} \bar{\omega}).$$

Hence

$$\langle (d''a_j), \omega \rangle = \int_{\mathbb{R}} d''a_{j \wedge} \omega_j = 2\pi V - 1 \sum_{k} \mathrm{Res}_{\mathbf{P}k}(h_{0k} \bar{\omega}),$$

this shows that our second invariant $(d''a_j)$ is the same as Weil's one.

4. Returning to the general case of any dimension m, we can express the second invariant explicitly in terms of R_j and h_{jk} (or R_j and b_{jk}).

Take a partition of unity $1=\sum f_{j}$, subordinate to the covering $\{U_{j}\}$, then

$$\begin{split} &\int_{\nu}d''a_{j\wedge}\omega_{j} = \sum_{j}\int_{\nu}f_{j}\cdot(d''a_{j\wedge}\omega_{j}) \\ &= \sum_{j}\int_{\nu}d(f_{j}a_{j}\omega_{j}) - \sum_{j}\int_{\nu}df_{j\wedge}a_{j}\omega_{j} = -\sum_{j}\int_{\nu}d''f_{j\wedge}a_{j}\omega_{j}. \end{split}$$

For a point P of V, let $P \in U_{j_0} \cap \cdots \cap U_{j_q}$ and $P \notin U_j$ for $j \neq j_p$, then in the neighborhood of P we have

$$egin{align*} &lpha_{j_{\mu}j_{0}}a_{j_{0}}+b_{j_{\mu}j_{0}},\quad \omega_{j_{\mu}}=a_{j_{\mu}j_{0}^{-1}}\omega_{j_{0}},\ &\sum_{j}d''f_{j\wedge}lpha_{j}\omega_{j}=\sum_{\mu}d''f_{j_{\mu}\wedge}a_{j_{0}}\omega_{j_{0}}+\sum_{\mu}d''f_{j_{\mu}\wedge}h_{j_{\mu}j_{0}}\overline{\omega}=\sum_{j}d''f_{j\wedge}h_{jj_{0}}\overline{\omega}. \end{aligned}$$

Now $\sum_{j} d'' f_{j} h_{jj_0}$ does not depend on j_0 , and hence is a differential form on the whole V (with singularities). In fact

$$egin{align} \sum_{j}d''f_{j}\!\cdot\!h_{jj_{1}}\!-\!\sum_{j}d''f_{j}\!h_{jj_{0}}\!=\!\sum_{j}d''f_{j}\!h_{j_{0}j_{1}}\!=\!0. \ \gamma_{j}\!=\!-R_{j}\!\sum_{j}d''f_{k}\!h_{kj_{0}}, \end{align}$$

Put

then γ_j is C^{∞} in U_j and $\gamma=(\gamma_j)$ is a d''-closed (0,1)-form with coefficients in $\mathfrak A$. The above formula shows that $\langle (d''a_j),\omega\rangle=\langle\gamma,\omega\rangle$, hence

$$\gamma \sim (d''a_j).$$

References

- [1] A. Weil: Fibre spaces in algebraic geometry. Mimeographed Notes, University of Chicago (1952).
- [2] K. Kodaira: On cohomology groups of compact analytic varieties with coefficients in some analytic faisceau. Proc. Nat. Acad. Sci., U.S.A., 38 (1953).
- [3] K. Kodaira and D. C. Spencer: Divisor class groups on algebraic varieties. Proc. Nat. Acad. Sci., U.S.A., **38** (1953).
- [4] K. Kodaira: On a differential-algebraic method in the theory of analytic stacks. Proc. Nat. Acad. Sci., U.S.A., **39** (1954).
- [5] Y. Akizuki and S. Nakano: Note on Kodaira-Spencer's proof of Lefschetz theorems. Proc. Japan Acad., **30** (1954).