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113. Note on Deformation Retract

By Kiyoshi AOKI
Mathematical Institute, TShoku University, Sendai

(Comm. by Z. SUETUNA, M.J.A., July 12, 1954)

1. The main object of this note is to study a mapping which
has a torus as the image space. The methods of the paper are
strongly influenced by Spanier’s proofs [5].

2. In this section we prepare some definitions and lemmas known
in Spanier’s paper on Borsuk’s cohomotopy groups 5], 2].

Let . denote the space of a sequence of real numbers y(y)
(i=1, 2, ...) which are finitely non-zero (i.e. y--0 except for a finite
set of integers i). is metrized by

dist (y, y’)--( (y-y)).

Definition 2.1. The sets below are defined by the corresponding
condition on the right:

S -Iyely=O for in+l

E"+--[yely0 for i:n+l

and y---.1},

and

( o, o, ..),E/=p=
E

_
--(-1, 0,..., 0,...),

T -x S, q=p x p,=x (for nl).
Lemma 2.2. Let A be a deformation retract [4] of a compact

space X and let f" (X, A)(Y, B) be a map of (X, A) onto (Y, B),
which maps X-A homeomorphically onto Y-B. Then B is a defor-
marion retract of Y.

Lemma 2.3. Let (X, A) be a compact pair with dim (X-A)n.
If F is any closed subset of Xz I-A I, dim Fn+ 1.

Definition 2.4. Let f" (X, A)(Yx Y, (y, y)). A map
F- (X L A zI)(Y Y, (u, y))

will be called a normalizing homotopy for f, if
F(x, 0)=f(x) for all x e X.
F(x, ) (Y y) (y

The map f" (X, n)[(Yz y) (y z Y), (y, y) defined by f’(x)-F(x, 1)
is called a normalization of f.

In he following Y Y will denote the space (Y y) (y z Y).
Let

a. [Yv Y, (y, y)](Y, y)
be define2 by
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by

(y’, y) =y’ for (y’, y) e Y y,
(y, y")-y" for (y, y") y Y.

Definition 2.5. Let a, B" (X, A)-->(Y, B) and assume that a

(X, A)--->(Y Y, (y, y)) can be normalized. Let f" (X, A)->(Yv Y,
(y, y)) be a normalization of a B. The sum with respect to f(de-
noted by a<=f:>B) is defined to be the composite map a<:fB--= f.

Lemma 2.5. Let (X, A) be a pair with dim F.<2n any closed
FX-A. If f (X, A)--->(S S, (p, p)), there exists a normalization
g of f such that fg rel f-l(S Y S).

Lemma 2.7. Let (X,A)be a compact pair with dim (X-A)
<:2n 1. If a,B, B" (X, A)--).(S, p) with aa’ and BB’ and if
g- (X, A)--->(S’ V S, (p, p)) is a normalization of a Z and g’ (X, A)
-->(S" V S, (p, p)) is a normalization of a’ B’, then g g’.

3. Our theorems are the following:
Theorem :.1. In the product space TT% the subset (T

q) U (q TTM) is a deformation retract of T T- (, ) U T’
xp U Txpx: UxpxT Upx:x T].

Froof. This is analogous to Borsuk’s proof 1. Let f" (E,
S-)-->(S’, p) map E’-S- homeomorphically onto S-p. Let f-(i)----- be the center of E. Define

g" [E2 x E-(,, x, x, 2,) U E2n (E) x S- U E2n X S
x (E) U (E) x S- x E2 U S-* x (En) x ETM,
E"x T- U T- xE’*]

-[Tx T’-(, ) 0 T’xf((E’)) x p U Tx p xf((E)’:)
U f((E")) x p x T’ g p xf((E)) x T’,
T’ x q U q x TTM]

g(x, xz, x, x)=(f(x),f(x), f(x), f(x)), where (E) is the interior
of a set E". Then g is a map onto T’ T2n- (19, 19, 19, 19) T2n X f((E))
P’ T2 P f((E’)) Uf((E’)) p T2 Up f((E’):) x T which maps

E2x E2-- (X, X, X, X) UE2x (E) x S-U E2x S- x (E) (E) x S-xEn S- x (E’) x E’- [E" x T"- T’- x E’] homeomorphically
onto

Te x Ten-(P, P, P, P) U Tn xf((En)’) x p U TZn x p xf((zn)’)
Uf((E"y) x p x T" Up xf((E’Y) x T- [Tx qUqx Tn].

Since E’xE is a 4n-cell with center (x, x, x, x) and the intersec-
tion of (E x E) and E" x E- [E x (E) x S"- U E x S"- x (E’)
U (E) x S- xE" U- x (E’) x E’J is E x T- U T- xE, it
is clear that Ex T’- U T-- x E is a deformation retract of E
xE- [(x, x, x, x) U E x (E’) x S- UE x S- x (E"y U (E) x S-xE U S"- x (E) x E. Therefore, by Lemma 2.2, T x q U q x T"
is a deformation retract of T x T- [(@, ) U T xf((E)) x p T
x p xf((E)) Uf((E-)) x p x T U p xf((E’)) x T’. T x T-T x
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p may be deformed onto T T- T f((E)’) p and the similar
deformations may be used for the another parts of the above set.
Therefore, T q q T is a deformation retract of T T
(, ) U T x x p U T x p x _) x p x T U P x x,T].
Theorem .2. In the product space T x T x T, the subset

(T T q) (T q T) U (q T T) is a deformation retract
of TxTxT-E(,,)UTxTxpxpUTxTxpxUT
x x p x T U T x p x x T U x p x TTM x T U p x x T" x T.
Since the proo is similar to that o Theorem 3.1, it will be omitted.

Lemma .. Let (E, A) be a pair with dim F4n-1 for any
closed FCX-A. Given a continuous map f" (X,A)(Y,B) into a
pair (Y, B) and given an open 2n-simplex , where T x U # x Te

lies on Y and its closure T x x T does not meet B, there is a
map g" (X,A)(Y,B) such that fg rel f-(Y-TxUxT)
and g(X) CY- T x U x T’.

Proof. Let #=a-# be the point set boundary of 6.

Let M=f -(T x U x T) and N=f-(T x U T). Then N
is a closed subset of M, and dim M4n-1. The map fN, which
maps N into Tx#UxT, as an extension f" MTxhUh
x T, because we consider the first coordinate or f(N) [ x T]
and the second coordinate for f(M) [Tx 5] and use the methods
shown by Dowker [3]. Define

g. (x, B)
by

x M,g(x)-
tf(x) if x e X-M.

Then g is continuous and g(X)CY- T x U a x T. Moreover, f
and f M are two maps of (M, N) into (T x a U a x T, T x U
x T) which agree on N and hence are homotopic relative to N.
Let

F" (Mx I, Nx I)(T x U x T, T x h U x T)
be a homotopy between f and f[ M relative to N. Define

G. (X I, A B)
by

G(x, t) if x M,
[f(x) if x e X-M.

Then G is a homotopy rel f-(Y-T x 6 U a x Te) between f and g.

Lemma .4. Let (X, A) be a pair with dim F6n-1 for any

closed FCX-A. Given a continuous map f" (X, A)(Y, B) into a
pair (Y, B) and given an open 2n-simplex a, where T x T x U TTM

x6xTU6XTXT lies o Y and its closure T’XT’xuT"
x5xTuXTnxTn does not meet B, there is amapg" (X,A)
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(Y, B) such that fg rel f-(Y- Tn T , [J T T U o. T
T) and g(X)Y-T T T . T’ Tn T

Since the proof is similar to that of Lemma 3.3, it will be omitted.
Theorem .5. Let (X,A) be a pair with dimF<4n for any

closed FX-A. If f" (X, A)(T T, q q), there exists a nor-
malization g of f such that fg rel f-(TT).

Proo Consider (T Tn, (q, q)) as a simplicial pair subdivided
in such a way that (q, q) is a vertex and (, ) ( T $ z p ) T p
pTpzT is interior to Ta6T whose
closureT:’ T does not meetTT. By Lemma 3.3, there
is a map h" (X, A)(Tz T; (q, q)) such that h(X)TT-T
xUxTCTxT-[(,)TxxpUTxpxUxp x T
U p x x T and fh rel f-’(T x T-T x U # x T). By Theo-
rem 3.1, T V T is a deformation retract o T x T- [(, ) UT

p T" p p T p T% so there is a retracting
deformation F of it onto TvTn. Then Fh is a normalizing
homotopy 2or h and if g is the resulting normalization of h, gh rel
h-(T V T)=f-(T V T). Therefore, gf rel f-(T V T’).
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