112. On the Mass Distribution Generated by a Function of P. L. Class

By Osamu IshiKawa
Mathematical Institute, Tokyo Metropolitan University
(Comm. by Z. Suetuna, m.J.A., July 12, 1954)

§1. Introduction. Let $f(x, y)$ be a subharmonic function in a planar region G, and $\mu(e)$ be the completely additive, non-negative Borel set function generated by $f(x, y)$. Let $c(x, y ; r)$ be the circle of radius r with center (x, y) included in the region G with its boundary.

We shall introduce the functions:

$$
\begin{gathered}
A(f ; x, y ; r)=\frac{1}{\pi r^{2}} \int_{0}^{2 \pi} \int_{0}^{r} f(x+\rho \cos \theta, y+\rho \sin \theta) \rho d \rho d \theta, \\
I(f ; x, y ; r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x+r \cos \theta, y+r \sin \theta) d \theta
\end{gathered}
$$

Saks ${ }^{1)}$ proved the following important theorem:
Theorem A. If $f(x, y)$ is subharmonic in the region G, then, for almost all points (x, y) in G, we have

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{8}{r^{2}}[A(f ; x, y ; r)-f(x, y)]=D_{s} \mu(x, y), \\
& \lim _{r \rightarrow 0} \frac{4}{r^{2}}[I(f ; x, y ; r)-f(x, y)]=D_{s} \mu(x, y),
\end{aligned}
$$

where $D_{s} \mu(x, y)$ denotes the symmetric derivative of $\mu(e)$ at (x, y), that is to say,

$$
D_{s} u(x, y)=\lim _{\rho \rightarrow 0} \frac{\mu[C(x, y ; \rho)]}{\pi \rho^{2}},
$$

$C(x, y ; \rho)$ being the circle completely included in G. Recently M. D. Reade ${ }^{2)}$ proved the following

Theorem B. If $f(x, y)$ is a function of P. L. class in G, then, for almost all points (x, y) in G, we have

$$
\lim _{r \rightarrow 0} \frac{4}{r^{2}}\left[I^{2}(f ; x, y ; r)-A\left(f^{2} ; x, y ; r\right)\right]=f^{2}(x, y) D_{s} \sigma(x, y)
$$

where $\sigma(e)$ denotes the mass distribution generated by $\log f(x, y)$. In this paper, we shall generalize this. We shall prove in $\S 2$ some lemmas and in $\S 3$ our main theorem.
§ 2. We prove some lemmas which will be used in §3.

Lemma 1. Let $p(x, y), q(x, y)$ and $p(x, y) q(x, y)$ be subharmonic in G, and put

$$
\begin{aligned}
& A(p q ; x, y ; r)=\frac{1}{\pi r^{2}} \int_{0}^{2 \pi} \int_{0}^{r} p(x+\rho \cos \theta, y+\rho \sin \theta) q(x+\rho \cos \theta \\
&y+\rho \sin \theta) \rho d \rho d \theta
\end{aligned}
$$

Further, let $\mu_{p}(e), \mu_{q}(e), \mu_{p q}(e)$ be the mass distributions generated by $p(x, y), q(x, y)$ and $p(x, y) q(x, y)$ respectively.
Then we have

$$
\begin{align*}
& \lim _{r \rightarrow 0}[L(p ; x, y ; r) L(q ; x, y ; r)-A(p q ; x, y ; r)] / r^{2} \tag{1}\\
& \quad=\frac{q(x, y) D_{s} \mu_{p}(x, y)+p(x, y) D_{s} \mu_{q}(x, y)}{4}-\frac{1}{8} D_{s} \mu_{p q}(x, y)
\end{align*}
$$

a.e. in G.

Proof. By the definitions we have

$$
\begin{aligned}
L(p) L(q)- & A(p q)=\frac{1}{2}\{[L(p)+p(x, y)][L(q)-q(x, y)] \\
+ & {[L(p)-p(x, y)][L(q)+q(x, y)]\}-\{A(p q)-p q\} }
\end{aligned}
$$

and then

$$
\begin{align*}
\frac{L(p) L(q)-A(p q)}{r^{2}}= & \frac{1}{8}[L(p)+p(x, y)] \frac{4}{r^{2}}[L(q)-q(x, y)] \tag{2}\\
& +\frac{1}{8}[L(q)+q(x, y)] \frac{4}{r^{2}}[L(p)-p(x, y)] \\
& -\frac{1}{8} \frac{8}{r^{2}}[A(p q)-p(x, y) q(x, y)] .
\end{align*}
$$

By Theorem A, when $r \rightarrow 0$,

$$
\left.\begin{array}{lc}
\begin{array}{lc}
4[L(q)-q(x, y)] \\
r^{2}
\end{array} D_{s} \mu_{q}(x, y), & 4[L(p)-p(x, y)] \tag{3}
\end{array} r^{2} D_{s}(x, y)\right\}
$$

a.e. in G.

Since $p(x, y), q(x, y)$ are subharmonic, $L(p)$ and $L(q)$ converge to $p(x, y)$ and $q(x, y)$ respectively a.e., as $r \rightarrow 0$. Therefore by (2) and (3) wet get

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{L(p) L(q)-A(p q)}{r^{2}} & =\frac{1}{4}\left\{p(x, y) D_{s} \mu_{q}(x, y)+q(x, y) D_{s} \mu_{p}(x, y)\right\} \\
& -\frac{1}{8} D_{s} \mu_{p q}(x, y), \quad \text { a.e. in } G,
\end{aligned}
$$

which is the required.
Lemma 2. If $p(x, y), q(x, y)$ and $p(x, y) q(x, y)$ are subharmonic in G, and if e is a Borel set completely included in G, then we have

$$
\begin{aligned}
\mu_{p q}(e)=\iint_{e} p(x, y) d \mu_{q}\left(e_{p}\right) & +\iint_{e} q(x, y) d \mu_{p}\left(e_{p}\right) \\
& +2 \iint_{e}\left(\frac{\partial p}{\partial x} \quad \frac{\partial q}{\partial x}+\frac{\partial p}{\partial y} \frac{\partial q}{\partial y}\right) d x d y .
\end{aligned}
$$

Proof. Let D be an arbitrary domain such that $\bar{D} \subset G$.
Evans ${ }^{3)}$ and Riesz ${ }^{4}$ proved the following facts: If we put

$$
\begin{aligned}
& A_{2}(p ; x, y ; r) \equiv A(A(p) ; x, y ; r), A_{3}(p ; x, y ; r) \equiv A\left(A_{2}(p) ; x, y ; r\right), \\
& A_{2}(q ; x, y ; r) \equiv A(A(q) ; x, y ; r), A_{3}(q ; x, y ; r) \equiv A\left(A_{2}(q) ; x, y ; r\right),
\end{aligned}
$$

then there exists a positive decreasing sequence $\left\{\rho_{n}\right\}(\rho \downarrow 0)$ such that the three sequences

$$
\begin{equation*}
\mu_{p}^{(n)}(e)=\iint_{e} \Delta A_{3}\left(p ; x, y ; \rho_{n}\right) d x d y, \mu_{q}^{(n)}(e)=\iint_{e} \Delta A_{3}\left(q ; x, y ; \rho_{n}\right) d x d y \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{p q}^{(n)}(e)=\iint_{\epsilon} \Delta\left[A_{3}\left(p ; x, y ; \rho_{n}\right) \times A_{3}\left(q ; x, y ; \rho_{n}\right)\right] d x d y \tag{5}
\end{equation*}
$$

converge to $\mu_{p}(e), \mu_{q}(e), \mu_{p q}(e)$, respectively as $n \rightarrow \infty$, where e denotes an open set $e(\ddot{e} \subset G)$ and is $\mu_{p^{-}}, \mu_{q^{-}}, \mu_{p q^{-}}$regular.
Now let R denote orientated, $\mu_{p^{-}}, \mu_{q^{-}}, \mu_{p q^{-}}$regular rectangle contained in D and put $A_{3}\left(p ; x, y ; \rho_{n}\right) \equiv \mathfrak{C}^{(n)}(x, y), A_{3}(q ; x, y ; r) \equiv \mathfrak{B}^{(n)}(x, y)$. Let us now estimate $\Delta\left(\mathfrak{H}^{(n)} \mathfrak{B}^{(n)}\right)$. Since

$$
\begin{aligned}
& \frac{\partial^{2} \mathfrak{A} \mathfrak{U}^{(n)} \mathfrak{B}(n)}{\partial x^{2}}=\mathfrak{H}_{x x}^{(n)} \mathfrak{B}^{(n)}+2 \mathfrak{H}_{x}^{(n)} \mathfrak{B}_{x}^{(n)}+\mathfrak{H}_{x x}^{(n)} \mathfrak{B}(n), \\
& \frac{\partial^{2} \mathfrak{Y}(n) \mathfrak{B}(n)}{\partial y^{2}}=\mathfrak{A}\left(n ; \mathfrak{B}_{y y}^{\prime n)}+2 \mathfrak{A}_{y}^{(n)} \mathfrak{B}_{y}^{(n)}+\mathfrak{H}_{y y}^{(n)} \mathfrak{B}^{(n)},\right.
\end{aligned}
$$

we have

$$
\begin{align*}
\Delta\left(\mathfrak{V}^{(n)} \mathfrak{B}^{(n)}\right) & =\mathfrak{A}^{(n)}\left(\mathfrak{B}_{x x}^{(n)}+\mathfrak{B}_{y y}^{(n)}\right)+\mathfrak{B}^{(n)}\left(\mathfrak{H}_{x x}^{(n)}+\mathfrak{H}_{y y}^{(n)}\right)+2\left(\mathfrak{H}_{x}^{(n)} \mathfrak{B}_{x}^{(n)}+\mathfrak{H}_{y}^{(n)} \mathfrak{B}_{y}^{(n)}\right) \\
& =\mathfrak{A}^{(n)} \Delta \mathfrak{B}^{(n)}+2\left(\mathfrak{H}_{x}^{(n)} \mathfrak{B}_{x}^{(n)}+\mathfrak{H}_{y}^{(n)} \mathfrak{B}_{y}^{(n)}\right)+\mathfrak{B}^{(n)} \Delta \mathfrak{H}^{(n)} . \tag{6}
\end{align*}
$$

By (4), (5), (6), we obtain

$$
\begin{aligned}
\mu_{p q}(R)=\lim _{n \rightarrow \infty} \iint_{\boldsymbol{R}} \mathfrak{H}^{(n)} \Delta \mathfrak{B}^{(n)} d x d y & +\lim _{n \rightarrow \infty} \iint_{\boldsymbol{R}} \mathfrak{B}^{(n)} \Delta \mathfrak{H}^{(n)} d x d y \\
& +2 \lim _{n \rightarrow \infty} \iint_{\boldsymbol{R}}\left(\mathfrak{Y}_{x}^{(n)} \mathfrak{B}_{x}^{(x)}+\mathfrak{H}_{\boldsymbol{y}}^{(n)} \mathfrak{B}_{y}^{(n)}\right) d x d y,
\end{aligned}
$$

and by (4) and (5),

$$
\begin{align*}
\mu_{p q}(R)=\lim _{n \rightarrow \infty} \iint_{R} \mathfrak{Y}^{(n)} d \mu_{q}^{(n)}\left(e_{p}\right)+ & \lim _{n \rightarrow \infty} \iint_{R} \mathfrak{B}^{(n)} d \mu_{p}^{(n)}\left(e_{p}\right) \tag{7}\\
& +2 \lim _{n \rightarrow \infty} \iint_{R}\left(\mathfrak{H}_{x}^{(n)} \mathfrak{B}_{x}^{(n)}+\mathfrak{H}_{y}^{(n)} \mathfrak{B}_{y}^{(n)}\right) d x d y .
\end{align*}
$$

After Frostman, ${ }^{5)}$ we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \iint_{R} \mathfrak{R}^{(n)} d \mu_{q}^{(n)}\left(e_{p}\right)=\iint_{R} p(x, y) d \mu_{q}\left(e_{p}\right), \tag{8}\\
& \lim _{n \rightarrow \infty} \iint_{R} \mathfrak{B}^{(n)} d \mu_{p}^{(n)}\left(e_{p}\right)=\iint_{R} q(x, y) d \mu_{p}\left(e_{p}\right),
\end{align*}
$$

and after Evans ${ }^{3)}$

$$
\begin{align*}
\lim _{n \rightarrow \infty} \iint_{R}\left[\frac{\partial \mathfrak{Y}^{(n)}}{\partial x} \frac{\partial \mathfrak{B}^{(n)}}{\partial x}\right. & \left.+\frac{\partial \mathfrak{Y}^{(n)}}{\partial y} \frac{\partial \mathfrak{B}^{(n)}}{\partial y}\right] d x d y \tag{9}\\
& =\iint_{\boldsymbol{R}}\left(\frac{\partial p}{\partial x} \frac{\partial q}{\partial x}+\frac{\partial p}{\partial y}\right.
\end{align*}
$$

By (7), (8), (9), we get the following relation.

$$
\begin{align*}
\mu_{p q}(R)=\iint_{R} p(x, y) d \mu_{q}\left(e_{p}\right) & +\iint_{\boldsymbol{R}} q(x, y) d \mu_{p}\left(e_{p}\right) \tag{10}\\
& +2 \iint_{R}\left(\frac{\partial p}{\partial x} \frac{\partial q}{\partial x^{\prime}}+\frac{\partial p}{\partial y} \frac{\partial q}{\partial y}\right) d x d y .
\end{align*}
$$

By the reasoning of Reade, ${ }^{2)}$ we can see that this relation holds good for any open orientated rectangle contained in D.

Hence the relation (10) holds good for any Borel set contained in D. Since D is an arbitrary domain ($\bar{D} \subset G$), Lemma 2 is completely proved.
§3. We can show now the main theorem:
Theorem 1. If $p(x, y), q(x, y)$ and $p(x, y) q(x, y)$ are subharmonic in a domain G, and if $\mu_{p}(e), \mu_{q}(e)$ are mass distributions generated by $p(x, y), q(x, y)$ respectively, then we have

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{4}{r^{2}} & {[L(p ; x, y ; r) L(q ; x, y ; r)-A(p q ; x, y ; r)] } \\
& =\frac{1}{2}\left[p d_{s} \mu_{q}+q d_{s} \mu_{p}\right]-\left(\frac{\partial p}{\partial x} \frac{\partial q}{\partial x}+\frac{\partial p}{\partial y} \frac{\partial q}{\partial y}\right), \quad \text { a.e. in } G .
\end{aligned}
$$

Proof. By Lemma 1, we get

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{4}{r^{2}}[L(p ; x, y ; r) L(q ; x, y ; r)-A(p q ; x, y ; r)] \\
&=p D_{s} \mu_{q}+q D_{s} \mu_{q}-\frac{1}{2} D_{s} \mu_{p q}, \quad \text { a.e. in } G
\end{aligned}
$$

and by Lemma 2

$$
D_{s} \mu_{p q}=q D_{s} \mu_{p}+p D_{s} \mu_{q}+2\left(\frac{\partial p}{\partial x} \frac{\partial q}{\partial x}+\frac{\partial p}{\partial y} \frac{\partial q}{\partial y}\right), \quad \text { a.e. in } G .
$$

Therefore the required result is immediately obtained.
§ 4. We shall assume that $p(x, y), q(x, y)$ are functions of P. L. class in G. Then $u(x, y)=\log p(x, y)$ and
$v(x, y)=\log q(x, y)$ are subharmonic in G. Let $\sigma_{p}(e)$ and $\sigma_{q}(e)$ denote the mass distributions generated by $u(x, y)$ and $v(x, y)$ respectively.
By a theorem of Beckenbach, if $p(x, y), q(x, y)$ are functions of P. L. class, then we have for any circle $C(x, y ; r)$ completely included in G,

$$
A(p q ; x, y ; r) \leqq L(p ; x, y ; r) L(q ; x, y ; r)
$$

We shall discuss the value of

$$
\lim _{r \rightarrow 0} \frac{4}{r^{2}}[L(p ; x, y ; r) L(q ; x, y ; r)-A(p q ; x, y ; r)]
$$

in terms of $\sigma_{p}(e)$ and $\sigma_{q}(e)$. For this purpose we need a lemma which was proved by M. D. Reade. ${ }^{2)}$

Lemma 3. If e is a Borel set $(\bar{e} \subset R)$ and $p(x, y)$ is a function of P.L. class $(\log p(x, y)=u(x, y))$, then we have

$$
\mu_{p}(e)=\iint_{e} \exp u(x, y) d \sigma\left(e_{p}\right)+\iint_{e}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] p(x, y) d x d y
$$

Therefore

$$
\begin{equation*}
D_{s} \mu_{p}(x, y)=p(x, y) D_{s} \sigma_{p}(x, y)+p\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] . \tag{11}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
D_{s} \mu_{q}(x, y)=q(x, y) D_{s} \sigma_{q}(x, y)+q\left[\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right] \tag{12}
\end{equation*}
$$

Hence we have the following
Theorem 2. If $p(x, y), q(x, y)$ are positive functions of P.L. class in G and if $\sigma_{p}(e), \sigma_{q}(e)$ are mass distributions generated by $\log p(x, y)$ and $\log q(x, y)$, respectively, then we have

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{4}{r^{2}}[L(p ; x, y ; r) L(q ; x, y ; r)-A(p q ; x, y ; r)]=\frac{1}{2} p q\left\{D_{s} \sigma_{p}(x, y)\right. \\
& \left.\quad+D_{s} \sigma_{q}(x, y)\right\}+\frac{1}{p q}\left\{\left(q \frac{\partial p}{\partial x}-p \frac{\partial q}{\partial x}\right)^{2}+\left(q \frac{\partial p}{\partial y}-p \frac{\partial q}{\partial y}\right)^{2}\right\}, \quad \text { a.e. in } G .
\end{aligned}
$$

Proof. By Theorem I, we get

$$
\left.\begin{array}{rl}
P= & \lim _{r \rightarrow 0} \frac{4}{r^{2}}[L(p ; x, y ; r) L(q ; x, y ; r)-A(p q ; x, y ; r)] \tag{13}\\
= & \frac{1}{2}\left[p(x, y) D_{s} \mu_{q}(x, y)\right.
\end{array}+q(x, y) D \mu_{p}(x, y)\right] \quad \text { a.e. in } G .
$$

(11) and (12) give us

$$
\begin{aligned}
P= & \frac{1}{2}\left[p\left\{q D_{s} \sigma_{q}+q\binom{\partial \log q}{\partial x}^{2}+q\left(\frac{\partial \log q}{\partial y}\right)^{2}\right\}\right. \\
& \left.+q\left\{p D_{s} \sigma_{p}+p\left(\frac{\partial \log p}{\partial x}\right)^{2}+q\left(\frac{\partial \log p}{\partial y}\right)^{2}\right\}\right]-\left(\frac{\partial p}{\partial x} \frac{\partial q}{\partial x}+\frac{\partial p}{\partial y} \frac{\partial q}{\partial y}\right) \\
= & \frac{1}{2}\left[p q\left(D_{s} \sigma_{p}+D_{s} \sigma_{q}\right)+\frac{q}{p}\left\{\left(\frac{\partial p}{\partial x}\right)^{2}+\left(\frac{\partial p}{\partial y}\right)^{2}\right\}+\frac{p}{q}\left\{\left(\frac{\partial q}{\partial y}\right)^{2}+\left(\frac{\partial q}{\partial y}\right)^{2}\right\}\right] \\
& -\left(\frac{\partial p}{\partial x}-\frac{\partial q}{\partial x}+\frac{\partial p}{\partial y} \frac{\partial q}{\partial y}\right) \\
= & \frac{1}{2} p q\left(D_{s} \sigma_{p}+D_{s} \sigma_{q}\right)+\frac{1}{p q}\left\{\left(q \frac{\partial p}{\partial x}-p \frac{\partial q}{\partial x}\right)^{2}+\left(q \frac{\partial p}{\partial y}-p \frac{\partial q}{\partial y}\right)^{2}\right\}
\end{aligned}
$$

which is the required.

References

1) S. Saks: On the operators of Blaschke and Privaloff for harmonic functions, Recueil Math., 9, 451-456 (1941).
2) M. D. Reade: Functions having subharmonic logarithms, Bull. American Math. Soc., 53, 89-95 (1947).
3) G. C. Evans: On potentials of positive mass, Trans. American Math. Soc., 37, 226-253 (1935).
4) F. Riesz: Sur les fonctions subharmoniques et leur rapport à la théorie du potential, Acta Math., 54, 321-360 (1930).
5) O. Frostman: Potential d'équilibre et capacité des ensembles, Lunds, Thèse (1935).
