111. Uniform Convergence of Fourier Series

By Masako Satô
Mathematical Institute, Tokyo Metropolitan University (Comm. by Z. Suetuna, m.J.A., July 12, 1954)

J. P. Nash ${ }^{11}$ has proved the following theorem.

Theorem 1. If $f(x)$ is of class $\phi(n)$ with bounded $\phi^{\prime}(n)$ and is continuous with modulus of continuity $\omega(\delta)$, then there exist positive constants A, B and C independent of $f(x)$ such that

$$
\left|s_{n}(x)-f(x)\right| \leqq \omega\left(\frac{1}{n}\right)\left[A \log \theta(n)+B \begin{array}{c}
n \\
\phi(n)
\end{array}\right]+\frac{C}{\theta(n)},
$$

where $\theta(n)$ is monotone increasing and

$$
1 \leqq \theta(n) \leqq \phi(n) ; \quad 1 \leqq \frac{\theta(n+1)}{\theta(n)} \leqq \frac{\phi(n+1)}{\phi(n)} .
$$

In this theorem, a function $f(x)$ is said to be of class $\phi(n)$ if

$$
\phi(n) \int_{a}^{b} f(x+t) \cos n t d t=O(1)
$$

uniformly for all x, n, a, b with $b-a \leqq 2 \pi$.
We shall prove the following generalization which contains the Dini-Lipschitz test as a particular case.

Theorem 2. If $f(x)$ is of class $\phi(n), \phi(n)$ being $O(n),{ }^{2)}$ and is continuous with modulus of continuity $\omega(\delta)$, then there exist positive constants A, B and C independent of $f(x)$ such that

$$
\begin{equation*}
\left|s_{n}(x)-f(x)\right| \leqq \omega\left(\frac{1}{n}\right)[A \log \theta(n)+B \log \underset{\phi(n)}{n}]+\underset{\theta(n)}{C}, \tag{1}
\end{equation*}
$$

where $\theta(n)$ is monotone increasing and $1 \leqq \theta(n) \leqq \phi(n)$.
Proof. It is sufficient to prove (1) for

$$
s_{n}^{*}(x)-f(x)=\frac{1}{\pi} \int_{0}^{\pi}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin n t}{2 \tan t / 2} d t .
$$

We divide the integral into three parts such that

$$
\begin{aligned}
s_{n}^{*}(x)-f(x) & =\frac{1}{\pi}\left[\int_{V}^{\alpha / \phi(n)}+\int_{\alpha / \phi(n)}^{\beta \theta(n) / \phi(n)}+\int_{\beta \theta(n) / \phi(n)}^{\pi}\right] \\
& =\frac{1}{\pi}[I+J+K]
\end{aligned}
$$

1) J. P. Nash: Uniform convergence of Fourier series, The Rice Institute Pamphlet (1953).

In this paper we use the notation in Zygmund, Trigonometrical series, 1936.
2) As J. P. Nash shows, the assumption $\phi(n)=O(n)$ does not loose generality.
say, where α and β are the least numbers $\geqq 1$ such that $\alpha n / \pi \phi(n)$ and $\beta n \theta(n) / \pi \phi(n)$ are odd integers. Then ${ }^{3)}$

$$
\begin{aligned}
I & =\int_{0}^{\alpha / \phi(x n)}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin n t}{2 \tan t / 2} d t \\
& =\sum_{k=0}^{\{\alpha n / \pi \phi(n)\}-1} \int_{k \pi / n}^{(k+1) \pi / n}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin n t}{2 \tan t / 2} d t \\
& =\sum_{k=1}^{\alpha r} \int_{\pi / n}^{2 \pi / n}(-1)^{k-1}\left[f\left(x+t+\frac{k-1}{n} \pi\right)+f\left(x-t-\frac{k-1}{n} \pi\right)-2 f(x)\right] \\
& =\sum_{k=0}^{(\alpha r-3) / 2} \int_{\pi / n}^{3 \pi / n}\left[\left\{f\left(x+t+\frac{\sin n t}{n} \pi\right)-f\left(x+t+\frac{2 k+1}{n} \pi\right)\right\}\right. \\
& \left.-\left\{f\left(x-t-\frac{2 k}{n} \pi\right)-f\left(x-t-\frac{2 k+1}{n} \pi\right)\right\}\right] \frac{\sin n t}{2 \tan (t+2 k \pi / n) / 2} d t \\
& +\sum_{k=0}^{(\alpha r-3) / 2} \int_{\pi / n}^{s \pi / n}\left[\left\{f\left(x+t+\frac{2 k+1}{n} \pi\right)-f(x)\right\}+\left\{f\left(x-t-\frac{2 k+1}{n} \pi\right)-f(x)\right\}\right] \\
& =I_{1}+I_{2}
\end{aligned}
$$

say, where for the sake of brevity we put $\gamma=n / \pi \phi(n)$. We have

$$
\left.\begin{array}{rl}
\left|I_{1}\right| & \leqq \sum_{k=0}^{(\alpha r-3) / 2} \int_{\pi / n}^{2 \pi / n}\left[\frac{|f(x+t+2 k \pi / n)-f(x+t+(2 k+1) \pi / n)|}{t+2 k \pi / n}\right. \\
\left.\quad+\frac{|f(x-t-2 k \pi / n)-f(x-t-(2 k+1) \pi / n)|}{t+2 k \pi / n}\right] d t
\end{array}\right] \begin{aligned}
& \leqq \omega\left(\frac{\pi}{n}\right)^{(\alpha r-3) / 2} \sum_{k=0}^{2 \pi / n} \frac{1}{(2 k+1) \pi / n} \int_{\pi / n}^{2 \pi / n} d t \leqq 2 \omega\left(\frac{\pi}{n}\right) \sum_{k=1}^{\alpha r-2} \frac{1}{k / n} \frac{1}{n} \\
& \leqq 2 \omega\left(\frac{\pi}{n}\right) \log \frac{\alpha n}{\pi \phi(n)} \leqq B_{1} \omega\left(\frac{1}{n}\right) \log \frac{n}{\phi(n)} ; \\
&\left|I_{2}\right| \leqq \frac{\pi}{n} \sum_{k=0}^{(\alpha r-3) / 2} \int_{\pi / n}^{2 \pi / n}\left[\frac{|f(x+t+(2 k+1) \pi / n)-f(x)|}{(t+2 k \pi / n)^{2}}\right. \\
&\left.\quad+\frac{|f(x-t-(2 k+1) \pi / n)-f(x)|] d t}{(t+2 k \pi / n)^{2}}\right] \\
& \leqq \frac{\pi}{n} \sum_{k=0}^{(\alpha r-3) / 2} \omega\left(\frac{2 k+3}{n} \pi\right) \int_{\pi / n}^{2 \pi / n} \frac{d t}{(t+2 k \pi / n)^{2}} \leqq B_{2} \sum_{k=1}^{\alpha r} \omega(k / n) \\
&=B_{2} \omega(1 / n) \sum_{k=1}^{\alpha r} \frac{1}{k} \leqq B_{3} \omega(1 / n) \log \frac{n}{\phi(n)} .^{4)}
\end{aligned}
$$

3) Cf. R. Salem: Comptes Rendus, 207, 662 (1938).
4) B_{1}, B_{2} and B_{3} are absolute constants.

Thus we have

$$
|I| \leqq B \omega(1 / n) \log \frac{n}{\phi(n)},
$$

where B is a positive constant independent of $f(x)$. Further

By using the first mean value theorem, we have

$$
\begin{aligned}
& J=-\frac{2}{n} \sum_{k=\alpha r-1}^{\beta r \theta(n)-2} \frac{(-1)^{k}}{2 \tan (\xi+k \pi / n) / 2}[f(x+k \pi / n+\xi) \\
&+f(x-k \pi / n-\xi)-2 f(x)],
\end{aligned}
$$

where $\pi / n \leqq \xi \leqq 2 \pi / n$. Hence

$$
\begin{aligned}
&|J| \leqq \frac{2}{\pi} \sum_{k=\alpha r-1}^{\beta r \theta(n)-2} \frac{1}{2 k+1}[|f(x+\xi+2 k \pi / n)-f(x+\xi+(2 k+1) \pi / n)| \\
&+|f(x-\xi-2 k \pi / n)-f(x-\xi-(2 k-1) \pi / n)|]
\end{aligned}
$$

$$
\leqq A \omega(1 / n) \log \theta(n)
$$

where A is a positive constant independent of $f(x)$.
We next prove that $|K| \leqq C / \phi(n)$. By the second mean value theorem

$$
\begin{aligned}
|K| & =\left|\int_{\beta \theta(n) / \phi(n)}^{\pi}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin n t}{2 \tan t / 2} d t\right| \\
& \leqq \frac{\phi(n)}{\beta \theta(n)}\left|\int_{\beta \theta(n) / \phi(n)}^{\eta}[f(x+t)+f(x-t)-2 f(x)] \sin n t d t\right|,
\end{aligned}
$$

where $\beta \theta(n) / \phi(n) \leqq \eta \leqq \pi$. Since $\left|\int_{a}^{b} f(x+t) \sin n t d t\right| \leqq C_{1} / \phi(n)$ for an absolute constant C_{1},

$$
|K| \leqq \frac{\phi(n)}{\beta \theta(n)} \frac{4 C_{1}}{\phi(n)}=\frac{4 C_{1}}{\beta \theta(n)} .
$$

Thus there are positive constants A, B and C such that

$$
\left|s^{*}(x)-f(x)\right| \leqq \omega(1 / n)\left[A \log \theta(n)+B \log \frac{n}{\phi(n)}\right]+\frac{C}{\theta(n)},
$$

and the theorem is therefore proved.

$$
\begin{aligned}
& J=\int_{\alpha / \phi(n)}^{\beta \theta(n) / \phi(n)}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin n t}{2 \tan t / 2} d t \\
& =\sum_{k=\alpha n / \pi \beta p(n)}^{\{\beta n \theta(n) / \pi \phi(n)\}-1} \int_{k \pi / n}^{(k+1) \pi / n}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin n t}{2 \tan t / 2} d t \\
& =\int_{\pi / n}^{2 \pi / n} \sum_{k=\alpha \gamma-1}^{\beta \gamma \theta(n)-2}(-1)^{k}[f(x+t+k \pi / n)+f(x-t-k \pi / n)-2 f(x)] \\
& \cdot \frac{\sin n t}{2 \tan (t+k \pi / n) / 2} d t .
\end{aligned}
$$

Theorem 3. If $f(x)$ is of class $\phi(n), \phi(n)$ being $O(n)$, and is continuous with modulus of continuity $\omega(\delta)$, where $\phi(n)$ satisfies $\omega(1 / n) \log n / \phi(n) \rightarrow 0$ as $n \rightarrow \infty$, and moreover if $\theta(n)$ is monotone increasing to infinity, such that $1 \leqq \theta(n) \leqq \phi(n)$ and $\omega(1 / n) \log \theta(n) \rightarrow 0$ as $n \rightarrow \infty$, then the Fourier series of $f(x)$ converges uniformly to $f(x)$.

We may easily prove from Theorem 2
Corollary 1 (Dini-Lipschitz). If $f(x)$ is continuous and

$$
\omega(1 / n)=o(1 / \log n)
$$

then the Fourier series of $f(x)$ converges uniformly.
For the proof it is sufficient to take $\phi(n)=\theta(n)=\log n$ in Theorem 3.

Corollary 2. If $f(x)$ is continuous and

$$
\begin{aligned}
& \omega(1 / n)=o(1 / \log \log n), \\
& \int_{a}^{b} f(x+t) \cos n t d t=O(\log n / n),
\end{aligned}
$$

uniformly in x, n, a, b, where $b-a \leqq 2 \pi$, then the Fourier series of $f(x)$ converges uniformly.

For the proof it is sufficient to take $\phi(n)=n / \log n$ and $\theta(n)=\log n$ in Theorem 3.

Finally I wish to express my gratitude to Professor S. Izumi for his suggestions and encouragement.

