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Kobe University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1954)

The generalisations of extension theorem on continuous functions
were developed by R. Arens (1), C.H. Dowker (5), J. Dugundji (6),
and C. Kuratowski (12). A space is called countably paracompact
if every countable open covering has a locally finite refinement.
Hence countably paracompact spaces are a generalisation of para-
compact spaces. C.H. Dowker and M. Kattov (11) have shown that
countably paracompact normal spaces have many important proper-
ties. Recently B. . Ball (2)proved that every linearly ordered
space is countably paracompact.

In this note, we shall prove an extension theorem of continuous
mappings on countably paracompact normal space, and a theorem
of ANR as its application.

1. An extension theorem on countably paracompact normal
spaces

Theorem 1. Let A be a closed subset of countably paracompact
normal space X, and f be a continuous map on A with values in a
separable Banach space S. Then f may be extended to a map (con-
tinuous) f of X into S.

The proo will be technically the same 2or the collectionwise
normal space (C. H. Dowker (5)). We shall first some lemmas which
will be used in the proof o2 Theorem 1.

Lemma 1. Any Banach space is countably paracompact normal.
Proof. Since a metric space is paracompact normal (see A. H.

Stone (15)), any Banach space is countably paracompact normal.
Lemma 2. If a is a locally finite covering of a normal space X,

there is a canonical map of X into the nerve Xi of X.
For the detail, see C.H. Dowker (4), p. 202 or S. Eilenberg and

N. Steenrod (7), p. 286.
Proof (the idea only). Let B be a shrinkable covering of a. Since

X is normal, such a covering B exists. (See S. Lefschetz (14), p. 26.)
Therefore by the decomposition of unity, there are continuous maps
(x) such that

4 (x) o,
2) :](x)--I for x X,
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3) .(x)-0 for x U ea.
Let b(x)-,(x)-,, where , is the vertex corresponding to U a,
then (x) is a canonical map of X into

The proof of Theorem 1. Since S is separable, the covering of

S by all open sets o diameter 1 has a countable covering /..
2

Since S is countably paracompact normal, / has star finite refine-
ment B.. (See K. Iski (9), p. 350.) Therefore each f-(B,)is star
finite countable open covering of A. Hence since a theorem of O.
Hanner, there is a locally finite open covering a o2 X such that,
or each U of a, UA is an element of

Now we shall define a sequence of maps [f(x)} by induction.
If n=l let aa. Suppose that n > 1, and f_- X- S has been
defined. Then f,-(v) is a locally finite covering of X. Let a be
a locally finite common refinement of a and f;_(7). Let ]X.! be
the nerve by a, and let . be a canonical map of X into X,.I. By
Lemma 2, such a map exists. For each x of X, let d,(x) be
the simplex determined by x in X.I. (See S. Eilenberg and N.
Steenrod (7), p. 285.) Therefore .(x)e d,.(x). We shall define a

and u themap ." X,.I--> S as follows: Let U be a set of
corresponding vertex of IX,,I. Let UA-O, and if n-l, take any
point of S as the value of (u). I2 n > 1, take g,_(x) or a point
x of U as (u). If U..AO, we shall define (u)by setting

(u)----- f(x) for fix x e UA.
,(u) defined for the vertices of X,. may be extended linearly

to a map "[ X,]- S. Therefore for x e X, define
then f,(x) is clearly a continuous map of X into S.

Let n>l and x, yeUa.,, then

2
1) If UA 0, yeA, then

1[lf-dY)--f(Y) [] <:
n+l

and by .(u)--f(y),

li f,,_(x)-(u) II <_1__.

2) If UA O, by (u)--f,_(y), then

2
1

Therefore we have
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Hence

IIf_(x)-f(x) ll < 1
2n-2

Let UA =0 and (u)=f(y) for y e UA, then for z UA we
have

2

Therefore

ilf(x)-/,,E,/,,(x)-I II < 1
2

This shows that Ilf(x)-f(x)il <-. The maps L(x)" X S (n-
2

1, 2, 3 ...) satisfy the conditions:

14) 11 f(x)--f_(x) II < 2_-,

5) 11 f(x)--f(x)11 < - for x A.
2

Since f(x) is convergent in norm, the limit map f(x) is continuous
and

Ii (x)--x) II -.
If xeA, then

Ilf(x)-f(x) Ii II f(x)-/(x)I1 + liA(x)-f(x)

1

This shows that f(x)=f(x) for x e A, and f(z) is an extension map
of f(x). Q.E.D.

A method similar to Theorem 1 or the results of C. H. Dowker
(5) and R.H. Binff ((8), p. 188) implies the following.

Theorem Z. Let A be a closed sbset of a paracompact normal
spaces X and f be continuous on A with values in a Banach space S.
Then f may be extended to a map f of X into S.

2. A theorem on separable metric ANR (countably para-
compact normal)

In this section, we shall prove, as an application of Theorem 1:
Theorem 3. A separable metric space is ANR (countably para-

compact normal) if and only if it is ANR (separable metric)and
toplogically complete.

Proof. The necessity of the condition follows from one of my
results. (See K. Is6ki (10), p. 571.)
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Conversely, let Y be an ANR (separable metric), and topologically
complete, i.e. absolute G. By a well-known theorem of C. Kuratowski,
K. Kunugi, and M. Wojdyslawski (see C. Kuratowski (13), p. 112), Y
is a subspace of a separable Banach space S. To prove that Y is an
ANR (countably paracompact normal) let X be a countably para-
compact normal space, A a closed subset of X and f: A- Y a map
of A into Y. By Theorem 1, we have an extension f:X-->S
of fi Since Y is G-set in S, we can find open sets G (n =1, 2, 3,
of S such that Y-- (G. f(G)(n=l, 2, 3, ...) are open in X and

contain the closed set A.
(x) on X such that

0

2) on

3) (x)=l on

The map

Therefore there are continuous maps

14(x) G,,,
is continuous on X, (z)=0 on A, and (x) :> 0 if fdx) S- Y. Then
f2(x)--(fdx), (x)) is continuous on X into S--S 1-(S- Y) O,
where 1= It] 0 t 1 }. The map : Y 0 --> Y defined by (y, 0)-- Y
is extendable to a neighbourhood V of Y 0, since Y 0 is closed in
the metric space S’ and Y is ANR (metric). For its extension map, let U-- v- (V), then U is a neighbourhood of A in X. Define

f" U-> Y by f(x)-f2(x)], then f is an extension of f and a
retraction of U onto :F. This shows that Y is ANR (countably
paracompact normal). Q.E.D.

From Theorem 3 and a result of O. Hanner ((8), p. 378), we
have the following.

Theorem $. A separable metric space is ANR (countably para-
compact normal) if and only if it is ANR (normal).
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