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149. A Necessary Unitary Field Theory as a Non-Holonomic
Parabolic Lie Geometry Realized in the Three-
Dimensional Cartesian Space. 11

By Tsurusaburo TAKASU
(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1954)

The purpose of the present paper consists in the following five
points: to deduce (i), (ii), (ii’), (iii), (iii") mentioned below from Part
I (these Proc., 29 (1953).

Since the three-dimensional non-holonomic Laguerre (parabolic
Lie) geometry is in law a four-dimensional teleparallelism geometry
keeping the Riemann (Weyl) metric, it is remarkable that the
following conjecture of Prof. Einstein of 1928, which seems to be
now scarcely considered, must acquire a renaissance: ‘‘HEs ist
denkbar, dass diese Theorie die urspringliche Fassung der allgemeinen
Relativitatstheorie verdrangen wird’’.

(i) A Unitary Field Theory of a Single Particle
6. A Necessary Unitary Field Theory of a Single Particle Charged
with Rest-mass m, and Constant Electricity —e. In Art. 4, we have
solved a two particles problem stated in Art. 2 and the resulting
generalizations of the Maxwell’s equations were (4.24), (4.25), (4.26)
and (4.27). Thereby the continuity condition (4.28) was assumed.
Now in the case of a single particle P, we have

(6.1) mozé:e“;i:é‘:g‘:54=§€—¢:)?i:af:ai=0,

Hence (4.24), (4.25), (4.26) and (4.27) become the necessary-unitary-
field-theoretical generalization of the Maxwell’s equations:

(6.2) 2 +eX)=e'+o', O (a'+ea) + O (X +eXH— O (F+eX9)=0,
(3} [0} w’ )]

6.2 2 (aF+eat)— 2 (@i +ea?)— O (X +eX) ="+, - (af + ea) =0.
w’ o* w? o'

7. General-Relativistic and Necessary-Unitary-Field-Theoretical
Generalization of the Dirac Equation in the Case of a Single Particle.
In the case of a single particle P, the general-relativistic and neces-
sary-unitary-field-theoretical generalizations
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of the Dirac equation become

(7.2) [ (zfr B2 +e¢>+fysm0E2]«[f 0,
(7.3) [ (2" E° +e¢')+%< h E S 9 yep )}«p:o,
(7.4) Y= —y, (L +eX)+ ) ww(a‘ + ea®).

8. General-Relativistic and Necessary-Unitary-Field-Theoretical
Generalization of the Schrodinger Equation in the Case of a Single
Particle. In the case of a single particle P, the general-relativistic
and necessary-unitary-field-theoretical generalizations

00 [ 5  F)-( p)
+ (LB S +ap+mE) [y=0,

(8.2) [(QZ;;E‘&%+0¢’+2@;Ev%+§$‘>2—<2L,E?;+e4>‘+§gi17§(
+38) + (1B O v eprs I B O vag) w=0

become
8.3) (55 + o)+ miBy |90,
(8.4) [(5’7—‘;@5’%+ e¢‘>2 (2%EZ+6¢“) +, %Ef + e¢»5>2] =0,

(ii) An Exact Gravitational (i) An Electromagnetic
Wave Theory of Two Particles

9. Gravitational Wave Theories

A. S. Eddington [1]® Prof. A. Einstein [4]
has given an approximative wave theory of gravity within the
general relativity. teleparallelism geometry.

10. Problem Formulation. Consider two particles O and P
charged with constant

1) The ciphers in the square brackets refer throughout this paper to the Ref-
erences at the end of this paper.
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rest-masses m, and m, electricity —e and —e

respectively, which move relative to each other. Then both O and
P emit gravitational P emit electromagnetic

energy radially in such a manner that the action is non-holonomie,
the energy levels being spherical. The law of motion is required.
Solution. Introducing our conditions:

¢$'=0, $'=0, ¢p*30, $'=0, ¢'F0, —p°=0, —¢*=0, $'%0,

(10.1) { $*3:0, $°=0, Ep’==0, ¢'=0, $*=0, Ep'==0,
Ep'*0, Ep°%0, Ep*=0, Ep‘=0, Ep*=0, Ep*0,
(10.2) (Ep'+Ep) (Ep'+edp'+ ED +ed’)
B 7 dE _dr - dS
—(mE-i-mE)»—d?, (m—m"?;@’ m—mrol?),

(10.3) <E“io‘+é$‘>=<mE+mﬁ>%i (Bp'+ e¢*)=(mE+mE) %f,
104) B+ og)=(niz+ W) G (Bp+of)=(nB-+mE) G

Introducing these values into (mE +mE)-times of

(10.5) —ty50° | dE = ,0'/dE,
(10.8)  v(ED' +EP)+v(ED' +ebY) 7(ED' +edp'+ED +ep)+ v (Ep*
= —iy,(Ep*+ e4*), +edh)=—ivy(ED +¢°),

which becomes

(10.7) EP+e¥+EP+e¥==0

for

(10.8) {%p‘ +1ysp°= P,y 0 +v,p'=P, { v + 7' =P, 7 +iyp°=P,
iy’ =7, v.ep'=72. Vb + v =P, vip' +ivip=2.

Applying the operator (4.17) to (10.7), we obtain
(10.9)  2v 2 (BP+eW+EP+e0)= O (Bp'+ed'+ ED'+64)
@ w

— 707 (8 + eX'+ 20+ 6 XY) + Sy vt + ed + @l + EF)
+20 %(Ep5+ep5+ﬁi>5+é$5):o.
@

In the present case, we have

(10.10) Xi= 9(Ef)’) , _‘%’iza(Eip4) + 8(E4p‘) =0,
® ® ®

(10.11) i‘i:i@, ?tza(E: P, ;oE P) o,
@ w (0]



No. 8] A Necessary Unitary Field Theory as a Non-Holonomic etc. 705
1012) o —2EP)_3ED) o _OEP)_AED)
o’ »® o’ o
1013 @ =2EF)_2ED) a =2ED)_oED) _
@’ [} w’ (5}
— 4 g —_ i
(10.14) X‘=0, X'=0, X1 =09 98 ;0%
® ©
10.15) =EP) T OEP) | i, Fioo,
12 13)
(10.16) of =0, & =0 o = 0¢"_opf o ot op’
o’ o® @’ w*

and (10.9):
(10.17)
=2 (Ep + Ep+54)
)
— ¥l X+ X+ Sy vt + @)
+2i %(Ep5+ ep®)=0.
Introducing the continuity condition

(10.18) 2. (Ep'+ED)
w

(Ep°+ep’)=0

+ 2 B+ +2i 2
(0] @

— (Ezo +ep’) +

2y, 2 (EP + ¢+ E P+ 2¥)
w

= OBy + et + B +55)
[0)
— 776X 4+ eX%) + Sy,v,(eat + €a)
+2i2 (Bp°+849=0.
[0)

(Ep +4")

2; 9 = (Ep°+e$%)=0

and then applying the operator (4.17) to (10.18) once more, we
obtain the generalized Maxwell’s equations

10.19) 2 (e F=cttet

(10.20) (a+ai)+ (X + + ¢

'—‘—;(%‘/"'i)—J):O,
@
(10.21)

g_j (@*+ @) — 2‘ (@ +a)

— 2 (4 Fy=et 4T,
(4]

(10.22) 2 (a¢'+a)=0
w

for the two particles O and P.

——(ea +ea)+

3 D
= (oot 09~ 5,

—22’;— (eX‘ + éX—i) =g'+ 0,

(eX"+ eX")
—-= 9 (eXi+2X%)=0,

@
(eal +23)

— ?; (eX'+eX))=o'+3,
w

9 (ea+83)=0
(0]
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11.

Case of Gravitation
Jor Two Particles.
(11.1)
= — 70 L+ XY + Sy pvalat + @)
and (5.3) and (7.1) to
(11.2) [%(EJFE)_ 2
h o — =,
+ 4 <§;_—Z-E;4+m°E )
h =9 ol
+ors <27ri B+ mi }p~o,
ats) v L@+B 2,
@

+fy4{~*(E+E) +e4>4}

+s {% (E’I'E) E’-l— e¢‘”«p:0.
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General-Relativistic Analogue to the Dirac Equation for the

l Case of Electromagnetism

The (5.1) becomes
84

= —y,7(eX " +eX)

+ > lvs74(ea’ +ea’)

[% (2—k—,E%+ !+ —}&——.E—%+ é$‘>
+9, <2LE +e¢“> +9s (2%55
+ éqiﬁ)] =0,

e )
+ ( h E et + zszZP>

s {(E+E)—k— e H«p:o.

12. General Relativistic Analogue to the Schrodinger Equation

for the Gravitation
for Two Particles.

l for the Electromagnetism

(8.1) and (8.2) become our general-relativistic

analogues to the Schrodinger equation:

(12.1y [—_’iz (E+E—)2<—a—t>2

~( B2 4wy
2m @

T ma s
(12.2) [—"_: (E + E){%)

(LE— LE 34 é$*>2

27t o' 27

(_(E+E) top ) }«p 0.

(iii) An Exact Gravitational‘

[<2Lme togtt E +e¢’>
<%EZ“¢4) <2Zb B

| +e8) J=0,

[(%E;+e¢‘ Ea +e¢>

——(—k—E + <;t>"+iE—)2

2t ot 271

+ <ﬁ(E+E)% +é$5) ]«p:o.

(iii") An Electromagnetic

Wave Theory of a Single Particle

18. Problem Formulation.
with constant rest-mass m,,

Congider a single particle P charged

| with constant electricity —e,
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which makes a motion emitting
gravitational

A Necessary Unitary Field Theory as a Non-Holonomic etc.

707

| electromagnetic

energy radially in such a manner, that the action is non-holonomie,

the energy level being spherical.

The law of motion is required.

Solution. Introducing the condition that the particle O has no

rest-mass (7,=0)

} electric charge (e=0)

into (10.19), (10.20), (10.21) and (10.22), we obtain

2 K3 &
@ (O] [0}
o7 _ od* O
ag  -r=0, L5
2
R
w w

The lefthand side is

gravitational analogues
of the Maxwell’s equations.

X' _o* oxX*
ot e o o
_PXI_, od_ 3
(Ok ’ wj cok
oxX' _ 4 ad _,
B o e e

' The righthand side is

‘ general-relativistic generalizations

14. General-Relativistic Analogues to the Dirac Equations for

the Case of Gravitation
for a Single Particle.
and (11.3) becomes respectively to

h o 2 |t
(14.1) ([%E‘%Zl-l— ysmoE ]«p_o,
h .9 ho .9
14.2 hgo,, (Pk po
( ) [%271'7: co‘i_k%1 (27ri w*

+ é$‘) +75(2_’;—7;E%+ eqbf’)]«p:o.

’ the Case of Electromagnetism
For the case of a single particle P, (11.2)

(g 590

[ Gt o)+ (7 )]

Y=0.

15. General-Relativistic Analogue to the Schrodinger Equations

Jor the Case of
Gravitation

Jor a Stngle Particle.
and (12.2) become respectively to

(15.1) (—ﬁﬁy@f—ﬁ%w (2)
+ (m B | =
(15.2) [—wE”( ) +4_h;E2(w4)2

+ (2—%E5+ e¢*) | ¥=0.

} Electromagnetism
For the case of a single particle P, (12.1)

(B v )~

2t o' ®

egt) | ¥=0,
KzizE ot gbt) <2f; B +e¢’4>

st (5) Jv=0.
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