846 [Vol. 30,

177. A Characterization of Hilbert Space

By Shouro KASAHARA
Kobe University
(Comm. by K. KuNuGl, M.J.A., Nov. 12, 1954)

It is our purpose in this note to prove the following

THEOREM. A Banach space E is unitary if and only if it satisfies
the condition.

(x) There is assigned to E a positive number a not greater than
1/2, and for any x, y in E, there exists at least a 2, a <A1=<1—aq,
which depends on x and y, such that

AlzP+A-DllyIE= 20 lle—y P+ +1—-Dy
where || || is the norm.

Whenever we speak of a Banach space we shall mean a Banach
space over real field K.

We shall only prove the ¢ if’’ part of the theorem since the
“only if ”’ part is clear. Using Kakutani’s result,” it is sufficient
to show that for any closed linear subspace M of E, there exists
an extension of the identity transformation of M which is linear
continuous and has norm 1. From the fact that the continuous
linear map of a linear subspace N of a Banach space into another
Banach space F' can be extended to a continuous linear map of the
closure N into F without changing the norm, and by virtue of
Zorn’s lemma, our problem can be simplified in the form: to prove
the following statement.

Let E be a Banach space satisfying the condition (x), and M a
closed hyperplane. Then the identity transformation I of M can be
extended to a continuous linear transformation of E onto M whose
norm 1is 1.

For this purpose, we shall need the lemmata below.

LEMMA 1. Let E be a Banach space satisfying the condition (x).
If x, ye E are such that:

max [[lz]l, lyll] <Illz—wyll
then there is a 4, 0 < A <1—a, which insures
Nax+(1—Dy|l <min [[|2]l, llyll].

Proof. We may suppose ||y || is not greater than ||z]||. In 2-
dimensional Euclidean space, we constract a triangle with verteces

1) S. Kakutani: Some characterizations of Fuclidean space, Japanese Jour.
Math., 16, 93-97 (1939).
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O, X and Y such that

| X=Ol=llzll, | Y=0l=llyll, | X=YI|=llz—-y]l.
For any 4, 0 <2< 1, let us denote by Z(2) a point on the segment
XY for which |ZQ)—Y|=1|X-Y|.

Now by the assumption, |X—O| is smaller than | X—7Y| and
not smaller than |Y—O|, so there is a 4,, 0 < 4,< 1, such that
| Z(A)—0| < |Y—O0| whenever 0 < A< 4.

On the other hand, we have from brief calculations

[ ZA)~0 =2z [P+ A=) 1y [P=2A =) llz—y %
and the condition (x) insures the existence of a 4,, a <4, <1—a,
such that
Al P+A=) Ny IP=40A =) lz—y P =122+ A =)y |2

We shall consider the case where 2, gives the inequality. Now
if the inequality holds true for all 2 with 0 <1< 1—a, then the
lemma is clear, because we can choose a 2 smaller than 4,, and
hence |[Ax+ 1=yl < l|lyll for this 4. Otherwise, there is a 2,
0 <2=<1—a, such that

(=) Hz[P+A=-)lyP=2A =D le—y|P=]llx+A -y |]*
since the norm is continuous.

Thus it will suffice to prove the lemma under following condi-
tion on the norm.

(xx) For any =, y € E, there exists a 4, 0 <2 =<1—a, such that
the equality (=) holds.

Therefore, we may assume that the equality (=) holds
for 4,; if 2, is not smaller than 4,, we consider the triangle
XYZ(2,). Then we can take a 4,, 0 < 1, < (1—a)?, for which (=) is
valid in view of condition (xx). Further, if 1,>4,, we consider
the triangle XYZ(4,), and so on. Since (1—a)" tends to zero as
n—> o, we have 4, < 4, for sufficiently large n, proving the lemma.

LEMMA 2. A closed convexr set C in a Banach space satisfying
the condition (x) contains a unique element of smallest norm.

Proof. Let p= :21; lxll and choose x,¢C that may satisfy
lznll ¥ p. Then for any e > 0, there is an integer N such that

”xn”<P+ey “wm[[<P+e)
for any m, n > N.

The condition (%) insures the existence of a 4, a <2< 1—a, such
that

1 1
—_— 2 << __ = 2.4 = 2
Nn—on |1 < 1 [l | +z [ @ 1]

1 2
_7(1““_:‘2)— [Iixn—l-(l—*ﬂ)wm[l .
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Now since C is convex, ir,+(1—2A)x, is in C, so that
2 2 2p+¢€)e
g —a, || < FE Pt (2p )
I I 01=2)  ia3A-2 a?
Let x,=lim x,, then x, is in C since C is closed, and it follows from

the conti”ﬁi.;ity of the norm that ||z, ||=p. It is an immediate con-
sequence of Lemma 1 and the condition (x) that the element =z, is
unique.

We shall now proceed to prove the above-mentioned statement.
Let x, be an element of £ which does not belong to M; then the
set {y—x,ly e M} is clearly convex and closed, so by Lemma 2 there
is a unique element ¥y, such that ||y,—, || < |ly—=,|| for all y e M.

It is easy to see that for all ¥y € M, we have

Hy—wll = ly—=,ll.
In faet, if ||y—y,|] is greater than ||y—=,|| for some y ¢ M, then in
virtue of Lemma 1 there exists a 4, 0 < 2 < 1—a, such that
Ay + L —DYo—2 || < [1Yo—, I
which is a contradiction since iy+(1—2)y, is in M.

Now we define I*(@)=I1y)+y,=y+ 4y,
for any x=y+x,, ye M, A¢cR.

Then it is clear that I'* is linear and an extension of I to M+ Rx,,
and hence it remains only to prove the continuity of I* and that
the norm is 1. For that matter the relation

Ny +ay, 1=121-11 2"y +y, |

holds for 4=:0.
On the other hand, [||A'y+y, /|| —2"ty—a,ll,
and so Ny+ay,ll = lly+a, 1,
which guarantees the continuity of I* and shows the norm is 1.
Thus we have reached the desired conclusion.

Additions and Corrections to Shouro Kasahara:
‘“ A Note on f-completeness’’

(Proc. Japan Acad., 30, No. 7, 572-575 (1954))

Pages 572-573, delete ¢ Proposition 2.

Page 574, delete ‘“ Proposition 6”’.

Page 574, line 19 from foot, for ‘“ mapping of W, we have p(I*(x)) =< p(x) for
any p & (ps) and x € K> read “ mapping of W, concerning to p (p.), we have p*(I(x))
= p(x) for any x € E.”’.

Page 574, lines 26-29, delete ‘“ Now, since- --inequality (x) for u*.”.

Pape 574, line 10 from foot, for ¢ for any p e (pu) there is’’ read * there exist a
p&(pa) and”.

Page 574, line 2 from foot, for *same a”” read ““same p and a”.



