No. 9]

176. On Abhomotopy Group in Relative Case

By Yoshiro INOUE (Comm. by K. Kunugi, M.J.A., Nov. 12, 1954)

Introduction

The (n, r)-th abhomotopy group $\kappa_r^n(Y, y_0)$ of a space Y as base point $y_0 \in Y$ was defined by S. T. Hu as a generalization of Abe groups (M. Abe [1]). He showed that its algebraic structure is completely determined in terms of homotopy groups of Y, and that

(*)
$$\kappa_r^n(Y, y_0) \approx \pi_{r+1}(Y^{s^{n-r-1}}, k_0) \quad r \geq 0,$$

where $Y^{s^{n-r-1}}$ is a mapping space consisting of all maps $f: S^{n-r-1} \to Y$ and topologized by compact open topology due to R. H. Fox (R. H. Fox [2]), and k_0 is a constant map: $k_0: S^{n-r-1} \to y_0$ (S. T. Hu[3]). In this paper, I shall show that the notion of abhomotopy group is relativized by using the same relation as (*). In this paper, we always denote by Y a given topological space, by Y_0 a subspace of Y and y_0 a reference point of Y_0 . Then the (m, n)-th relative abhomotopy group $\kappa_n^m(Y, Y_0, y_0)$ of (Y, Y_0, y_0) is defined by

$$(**)$$
 $\kappa_n^m(Y, Y_0, y_0) = \pi_m(Y^{E^n}\{S^{n-1}, Y_0\}, k_0)$ $m, n \ge 1,$

where $Y^{E^n}\{S^{n-1}, Y_0\}$ is a mapping space consisting of all maps $f: E^n, S^{n-1} \to Y, Y_0$ and topologized by compact open topology. I shall show that, in § 2, its algebraic structure is completely determined by $\pi_{m+n}(Y, Y_0, y_0)$ and $\pi_m(Y_0, y_0)$. In § 1, for a preliminary of § 2, I describe a definition of relative homotopy groups which is obtained by a slightly modification of that of absolute homotopy groups given in the book "S. T. Hu [4] § 21".

§ 1. Preliminary. 1.1. Let I^{n+1} be the (n+1)-cube, and I^{n+1} be the boundary of I^{n+1} as usual. We use the following notations:

$$I^n = \{x^{n+1} = (x_1, \dots, x_{n+1}) \in I^{n+1} \mid x_{n+1} = 0\},$$

$$J^n = \dot{I}^{n+1} - I^n,$$

$$P_n^n = \{x^{n+1} = (x_1, \dots, x_{n+1}) \in I^{n+1} \mid x_n = 0\},$$

$$x_0 = (0, \dots, 0) \in \dot{I}^{n+1}.$$

Let $\mathfrak{F}=Y^{J^n}\{\dot{I}^n,\,Y_0;\,x_0,\,y_0\}$ be the totality of maps $f\colon J^n,\,\dot{I}^n,\,x_0\to Y,\,Y_0,\,y_0$. The maps f of \mathfrak{F} are divided into disjoint homotopy classes relative to $\{\dot{I}^n,\,Y_0;\,x_0,\,y_0\}$. Denote by \mathcal{Q} the totality of these classes and by [f] the class containing $f\in\mathfrak{F}$. Let f be a representative of an arbitrary element α of $\pi_n(Y,\,Y_0,\,y_0)$. Define a map $\mu f\colon J^n\to Y$ by taking for each $x^{n+1}=(x_1,\ldots,\,x_{n+1})\in J^n$

$$\mu f(x^{n+1}) = \begin{cases} f(x_1, \dots, x_{n-1}, x_{n+1}) & \text{on} \quad P_n^n \\ y_0 & \text{on} \quad \overline{J^n - P_n^n}. \end{cases}$$

The map μf belongs to \mathfrak{F} , and $\llbracket \mu f \rrbracket \in \Omega$ depends only on the element α . Then the correspondence $\alpha \to \llbracket \mu f \rrbracket$ defines a one-to-one transformation $\mu^* : \pi_n(Y, Y_0, y_0) \to \Omega$ of $\pi_n(Y, Y_0, y_0)$ onto Ω . The proofs of this fact and the following theorems are parallel to that given in "S. T. Hu $\llbracket 4 \rrbracket \$ $\S 21$ ", and are omitted.

Theorem 1.1. For an arbitrary map $f \in \mathfrak{F}$, [f]=0 if and only if f has an extension $f^*: I^{n+1} \rightarrow Y$ such that $f^*(I^n) \subseteq Y_0$.

Theorem 1.2. Let $f, g \in \mathfrak{F}$ be two maps such that $\overline{f(J^n - P_n^n)} = y_0$ = $g(P_n^n)$ and let $h \in \mathfrak{F}$ be the map defined by

$$h(x) = \left\{ egin{aligned} f(x) & & x \in P_n^n \ g(x) & & x \in \overline{J^n - P_n^n}. \end{aligned}
ight.$$

Then [h] = [f] + [g].

1.2. It is well known that each element ξ of $\pi_1(Y_0, y_0)$ induces an automorphism of $\pi_n(Y, Y_0, y_0)$, where $n \ge 2$ is any integer. Denote this automorphism by

$$\xi^*: \alpha \rightarrow \alpha^{\xi}$$
 $\alpha \in \pi_n(Y, Y_0, y_0).$

Let ω and f be representatives of $\xi \in \pi_1(Y_0, y_0)$ and $\alpha \in \pi_n(Y, Y_0, y_0)$ respectively. Define a map $g: J^n \to Y$ by taking for each point $x = (x_1, \ldots, x_n, x_{n+1}) \in J^n$,

$$g(x) = egin{cases} f(x_1, \dots, x_{n-1}, x_{n+1}) & ext{when} & x_n = 1 \ \omega(x_n) & ext{when} & 0 \! < \! x_n \! < \! 1 \ y_0 & ext{when} & x_n \! = \! 0. \end{cases}$$

The class $[g] \in \Omega$ depends only on α and ξ , and

$$a^{\xi} = -\mu^{*^{-1}}[g].$$

If, for every point $y_0 \in Y_0$, the automorphisms ξ^* defined above are always identical, the space Y is called n-simple relative to Y_0 .

§ 2. Relative Abhomotopy Groups. 2.1. Let Y^{I^n} be a mapping space consisting of all maps $f: I^n \to Y$ and topologized by compact open topology, and let $\mathfrak{F}^n(y_0)$ be a subspace of the space Y^{I^n} , which consists of all maps $f: I^n$, I^{n-1} , $J^{n-1} \to Y$, Y_0 , y_0 , where $n \ge 1$ is any integer. Denote by $\mathfrak{F}^n(Y_0)$ the union of all $\mathfrak{F}^n(y)$ for $y \in Y_0$, i.e. $\mathfrak{F}^n(Y_0) = \underset{y \in Y_0}{\longrightarrow} \mathfrak{F}^n(y)$. Since $\mathfrak{F}^n(y_0)$ is a subspace of the space $\mathfrak{F}^n(Y_0)$, we have the following homotopy sequence,

$$(1) \xrightarrow{\partial_m} \pi_m(\mathfrak{F}^n(y_0), k_0) \xrightarrow{i_m} \pi_m(\mathfrak{F}^n(Y_0), k_0) \xrightarrow{j_m} \pi_m(\mathfrak{F}^n(Y_0), \mathfrak{F}^n(y_0), k_0) \xrightarrow{\partial_m} \pi_{m-1}(\mathfrak{F}^n(y_0), k_0) \xrightarrow{i_m} \cdots$$

where k_0 is the constant map; $k_0: I^n \rightarrow y_0$. It is well known that

(2)
$$\pi_m(\mathfrak{F}^n(y_0), k_0) \approx \pi_{m+n}(Y, Y_0, y_0).$$

When $Y_0 = y_0$ and $\mathfrak{F}^n(Y) = \mathbf{y} \in \mathbf{Y}^n(y)$, $\pi_m(\mathfrak{F}^n(Y), k_0) = \kappa_{m-1}^{m+n}(Y, y_0)$. When m=1, $\pi_1(\mathfrak{F}^n(Y_0), k_0)$ identical with the group $\sigma_{n+1}(Y, Y_0, y_0)$ which was defined by H. Uehara in his paper [5]. We denote by $\kappa_n^m(Y, Y_0, y_0)$ the homotopy group $\pi_m(\mathfrak{F}^n(Y_0), k_0)$ and call it the (m, n)-th relative abhomotopy group of (Y, Y_0, y_0) . It is obvious that this definition is identical with (**) in the introduction. In the sequel, we shall study the algebraic structure of relative abhomotopy groups. First, we prove the following lemma.

Lemma 2.1. The image of the boundary homomorphism ∂_m is only the neutral element, for every integer $m \geq 2$.

(proof) A representative f of an arbitrary element α of $\pi_m(\mathfrak{F}^n(Y_0),\mathfrak{F}^n(y_0),k_0)$ is characterized by

$$f(x^m, x^n) = egin{cases} y_0 & ext{on} & J^{m-1} imes I^n \ f(x_1, \dots, x_{m-1}, \, 0, \, x^n) & ext{on} & I^{m-1} imes I^n \ \omega(x^m) \in Y_0 & ext{on} & I^m imes J^{n-1} \ \in Y_0 & ext{on} & I^m imes I^{n-1}, \end{cases}$$

where $x^m = (x_1, \ldots, x_m) \in I^m$, $x^n \in I^n$. For this characterization, define the following two maps $g, h: \mathring{I}^m \times I^n \subseteq I^m \times J^{n-1} = J^{m+n-1} \to Y$ by taking

$$g(x^m,\,x^n) = egin{cases} f(x_1,\dots,x_{m-1},\,0,\,x^n) & ext{on} & I^{m-1}\! imes\!I^n \ y_0 & ext{on} & J^{m-1}\! imes\!I^n\! imes\!J^{n-1} \ h(x^m,\,x^n) = egin{cases} \omega(x^m) & ext{on} & I^m\! imes\!J^{n-1} \ y_0 & ext{on} & I^{m-1}\! imes\!I^n\! imes\!J^{m-1}\! imes\!I^n. \end{cases}$$

The maps g and h represent the element β , $\gamma \in \pi_{m+n}(Y, Y_0, y_0)$ respectively. From the definition, $\beta = \partial_m \alpha$. Let f_0 be the partial map: $f_0 = f \mid \dot{I}^m \times I^n \subseteq I^m \times J^{n-1}$. Then by Theorem 1.2, $[f_0] = [g] + [h]$. Since f_0 has an extension f to $I^m \times I^n$, and since h has an extension $h^*: I^m \times I^n \to Y$ such that

$$h^*(x^m, x^n) = h(x^m)$$
 on $I^m \times I^n$,

then $[f_0]=[h]=0$ by Theorem 1.1. Hence [g]=0, i.e. $\beta=\partial\alpha=0$. This completes the proof.

By the lemma stated above and from the exactness of the homotopy sequence (1), the homomorphism i_m is isomorphic into and the homomorphism j_m is onto. Therefore, the group $\kappa_n^m(Y, Y_0, y_0)$ contains a normal subgroup $\overline{\pi}_{m+n}$ isomorphic to $\pi_{m+n}(Y, Y_0, y_0)$.

A representative f of an arbitrary element α of $\kappa_n^m(Y, Y_0, y_0)$ is characterized by

Y. INOUE [Vol. 30,

$$f(x^m, x^n) = \begin{cases} y_0 & \text{on } \dot{I}^m \times I^n \\ \omega(x^m) \in Y_0 & \text{on } I^m \times J^{n-1} \\ \in Y_0 & \text{on } I^m \times I^{n-1}, \end{cases}$$

where $\omega(x^m) = f(x^m, 0, ..., 0)$. It is clear that $\omega(x^m) \in Y^{I^m} \{\dot{I}^m, y_0\}$. The element β of $\pi_m(Y_0, y_0)$ represented by ω depends only on α . By making correspondence α to β , we obtain a homomorphism:

$$p^*: \kappa_n^m(Y, Y_0, y_0) \to \pi_m(Y_0, y_0).$$

Conversely, for a representative ω of an element $\beta \in \pi_m(Y_0, y_0)$, the map $f_\omega: I^m \times I^n \to Y$ defined by

$$f_{\omega}(x^m, x^n) = \omega(x^n)$$
 on $I^m \times I^n$

is a representative of an element a_{ω} of $\kappa_n^m(Y, Y_0, y_0)$ and $p^*(a_{\omega}) = \beta$. The totality of such elements constructs a subgroup $\overline{\pi}_m$ of $\kappa_n^m(Y, Y_0, y_0)$ isomorphic to $\pi_m(Y_0, y_0)$. Therefore p^* is onto.

Lemma 2.2. Kernel $p^*=image\ i_m^*$, for every integer $m \ge 1$.

(proof) It is clear that $p^*i_m^*=0$, conversely, we suppose that $p^*\alpha=0$ for an element $\alpha \in \kappa_n^m(Y,Y_0,y)$. A representative f of α is characterized by (4). From the assumption $p^*\alpha=0$, there exists a homotopy $\omega_t: I^m \to Y(0 \le t \le 1)$ such that $\omega_0 = \omega$, $\omega_1 = y_0$. Define a homotopy $h_t: J^{m+n-1} = \dot{I}^m \times \dot{I}^n = I^m \times J^{n-1} \to Y(0 \le t \le 1)$ by

$$h_t\!\left(x^m,\,x^n
ight) = \left\{egin{array}{ll} y_0 & ext{on} & \dot{I}^m\! imes\!I^n \ \omega_t\!\left(x^m
ight) & ext{on} & I^m\! imes\!J^{n-1}. \end{array}
ight.$$

The homotopy h_t has an extension $h_t^*: I^m \times I^n \to Y$ such that $h_0^* = f$, $h_1^*(J^{m+n-1}) = y_0$, and $h_t^*(I^{m+n-1}) \subseteq Y_0$. Obviously, the map h_1^* is a representative of an element $\gamma \in \pi_m(\mathfrak{F}^n(y_0), k_0)$. By the homotopy h_t^* , $i_m^*\gamma = a$. This completes the proof.

By Lemmas 2.1 and 2.2, and from the exactness of the homotopy sequence (1), we have an isomorphism:

$$(5) \qquad \pi_m(\mathfrak{F}^n(Y_0),\,\mathfrak{F}^n(y_0),\,k_0)\!\approx\!\kappa_n^m(Y,\,Y_0,\,y_0)\!\left/\,\overline{\pi}_{m+n}\!\approx\!\pi_m(Y_0,\,y_0).\right.$$

Summalizing, from the commutativity of the group $\kappa_n^m(Y, Y_0, y_0)$ for $m \geq 2$, we have the following theorem.

Theorem 2.3. The group $\kappa_n^m(Y, Y_0, y_0)$ $(m \ge 1, n \ge 1)$ contains a normal subgroup $\overline{\pi}_{m+n}$ isomorphic to $\pi_{m+n}(Y, Y_0, y_0)$ and a subgroup $\overline{\pi}_m$ isomorphic to $\pi_m(Y_0, y_0)$. When $m \ge 2$, $\kappa_n^m(Y, Y_0, y_0)$ decomposes into the direct sum of two subgroups $\overline{\pi}_{m+n}$ and $\overline{\pi}_m$:

(6)
$$\kappa_n^m(Y, Y_0, y_0) = \overline{\pi}_{m+n} + \overline{\pi}_m \approx \pi_{m+n}(Y, Y_0, y_0) + \pi_m(Y_0, y_0).$$

2.2. When m=1, the group $\kappa_n^1(Y, Y_0, y_0)$ is a generalization of Abe groups. The group $\kappa_n^1(Y, Y_0, y_0)$ contains a normal subgroup $\overline{\pi}_{n+1}$ isomorphic to $\pi_{n+1}(Y, Y_0, y_0)$ and a subgroup $\overline{\pi}_1$ isomorphic to

 $\pi_1(Y_0, y_0)$. In the group $\kappa_n^1(Y, Y_0, y_0)$, the operation of $\pi_1(Y_0, y_0)$ on $\pi_{n+1}(Y, Y_0, y_0)$ induces an inner automorphism:

$$\alpha^{\xi} = \overline{\xi} \, \alpha \, \overline{\xi}^{-1},$$

where $\overline{\xi}$ is the element of π_1 such that $p^*(\overline{\xi}) = \xi$.

We prove the relation (7). From the definition of α^{ξ} , two maps f, g representing α and α^{ξ} are free homotopic relative to Y_0 with respect to the path ω representing ξ . Then there exists a map $F: I^{n+1} \times I \rightarrow Y$ such that

$$F(x^{n+1}, 1) = f(x^{n+1}), \quad F(x^{n+1}, 0) = g(x^n)$$

 $F(J^n, t) = \omega(t), \qquad F(I^n, t) \subseteq Y_0.$

Define a homotopy $h_s: I^{n+1} \to Y(0 \le s \le 1)$ by

$$h_s(x^{n+1}) = \begin{cases} F(0, x_2, \dots, x_{n+1}, 3x_1) = \omega(3x_1) & 0 \leq x_1 \leq \frac{1}{3}s \\ F\left(\frac{3x_1 - s}{3 - 2s}, x_2, \dots, x_{n+1}, s\right) & \frac{1}{3}s \leq x_1 \leq 1 - \frac{1}{3}s \\ F(1, x_2, \dots, x_{n+1}, 3 - 3x_1) = \omega(3 - 3x_1) & 1 - \frac{1}{3}s \leq x \leq 1. \end{cases}$$

Then $h_0=g$ and $[h_1]=\overline{\xi}\,\alpha\,\overline{\xi}^{-1}$. By the homotopy h_s , $\alpha^{\xi}=\overline{\xi}\,\alpha\,\overline{\xi}^{-1}$. This establishes the relation (7). Thus, we have the following result.

Theorem 2.4. The group $\kappa_n^1(Y, Y_0, y_0)$ $(n \ge 1)$ contains a normal subgroup $\overline{\pi}_{n+1}$ isomorphic to $\pi_{n+1}(Y, Y_0, y_0)$ and a subgroup $\overline{\pi}_1$ isomorphic to $\pi_1(Y_0, y_0)$, and is a split extention of $\pi_{n+1}(Y, Y_0, y_0)$ by $\pi_1(Y_0, y_0)$. A necessary and sufficient condition for Y to be (n+1)simple relative to Y_0 is that $\kappa_n^1(Y, Y_0, y_0)$ decomposes into the direct product:

(8)
$$\kappa_n^1(Y, Y_0, y_0) = \overline{\pi}_{n+1} \times \overline{\pi}_1 \approx \pi_{n+1}(Y, Y_0, y_0) \times \pi_1(Y_0, y_0).$$

References

- [1] M. Abe: Über die stetigen Abbildungen der n-Sphäre in einen metrischen Raum, Jap. J. Math., 16, 169-176 (1940).
- [2] R. H. Fox: On topologies for function spaces, Bull. Amer. Math. Soc., 51, 429–432 (1945).
- [3] S. T. Hu: On spherical mapping in a metric space, Ann. Math., 48, 717-734 (1947).
 - [4] —: Homotopy Theory, 1, Tulane University (1950).
- [5] H. Uehara: Some remarks on relative free homotopy, Jap. J. Math., 2, 247-252 (1951).