174. Dirichlet Problem on Riemann Surfaces. III (Types of Covering Surfaces)
 By Zenjiro Kuramochi
 Mathematical Institute, Osaka University
 (Comm. by K. Kunugi, m.J.A., Nov. 12, 1954)

Let \underline{R} be a null-boundary Riemann surface and let R be a positive boundary Riemann surface given as a covering surface.

1) If $\mu\left(R, \mathfrak{A}\left(R, \underline{R}^{*}\right)\right)=1$, we call R a covering surface of D-type over \underline{R}.
2) We map R^{∞} onto the unit-circle $U_{\xi}:|\xi|<1$ conformally. If the composed function $\underline{z}=\underline{z}(\xi): U_{\xi} \rightarrow R \rightarrow \underline{R}^{*}$ has angular limits with respect to \underline{R} almost everywhere on $|\xi|=1$. We call R a covering surface of F-type over \underline{R}.
3) Let $T(r)$ be the characteristic function of the mapping $R \rightarrow \underline{R}$. If $T(r)$ is bounded, we say, R is a covering surface of bounded type. By Theorem 1.1, it is easy to see that we have

Bounded type $\rightarrow F$-type $\rightarrow D$-type, and that F-type implies $\mu\left(R^{\infty}\right.$, $\left.\mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right)=1$. If the universal covering surface of the projection of R is hyperbolic, $\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)=1$ implies that R is a covering surface of F-type, because $\mu\left(R^{\infty}, \mathfrak{M}\left(R^{\infty}, B\right)\right)^{2}=0$.

Let \hat{R} be a covering surface over R. In the following, we investigate the relations between Riemann surface \hat{R} and R. By Theorem 1.1 we have at once the following

Theorem 3.1. If R is a covering surface of bounded type, then \hat{R} is also of bounded type relative to \underline{R}.

Theorem 3.2. Let R be a covering surface such that the universal covering surface of the projection $\underline{R}^{\infty \infty}$ of R is hyperbolic. We map $\underline{R}^{\infty}, R^{\infty}$ and \hat{R}^{∞} conformally onto the unit-circles $U_{\xi}:|\xi|<1, U_{\eta}:|\eta|<1$ and $U_{\zeta}:|\zeta|<1$ respectively. Let $\eta=\eta(\zeta), \xi=\xi(\zeta)$ and $\xi=\xi(\eta)$ be mappings $U_{\zeta} \rightarrow U_{\eta}, U_{\zeta} \rightarrow U_{\xi}$ and $U_{\zeta} \rightarrow U_{\xi}$ respectively. Then we have

$$
\mu\left(\hat{R}, \mathfrak{N}\left(\hat{R}, \underline{R}^{*}\right)\right) \geqq \mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)
$$

Proof. Since $\mu\left(\underline{R}^{\prime \infty}, \mathfrak{H}\left(\underline{R}^{\prime \infty}, B\right)\right)=\mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, B\right)\right)=\mu\left(\hat{R}^{\infty}, \mathfrak{H}\left(\hat{R}^{\infty}, B\right)\right)=0$ without loss of generality, we can suppose that every A.B.P. lies on \underline{R}. Let A_{η} and A_{ζ} be images of $\mathfrak{M}\left(R^{\infty}, \underline{R}\right)$ and $\mathfrak{H}\left(\hat{R}^{\infty}, \underline{R}\right)$ respectively, and let ${ }_{\eta} S_{\zeta},{ }_{\xi} S_{\zeta}$ and ${ }_{\xi} S_{\eta}$ be the sets where the corresponding functions

1) \rightarrow means implication.
2) Measure of a set of A.B.P.'s of R^{∞} with projections on the ideal boundary B of R.
have angular limits on $\bar{U}_{\eta}:|\eta| \leqq 1, \quad \bar{U}_{\zeta}:|\zeta| \leqq 1$ and $\bar{U}_{\eta}:|\eta| \leqq 1$ respectively. Then $\operatorname{mes}_{\eta} S_{\zeta}=\operatorname{mes}_{\xi} S_{\zeta}=$ mes $_{\xi} S_{\eta}=2 \pi$. Take a point $\zeta_{0} \in\left({ }_{\xi} S_{\zeta} \cap_{\eta} S_{\zeta} \cap C A_{\zeta}\right)$ and let $l_{\zeta_{0}}$ be the radius terminating at ζ_{0}, where $C A_{\zeta}$ is the complementary set of A_{ζ} with respect to the circumference of U_{ζ}. If l_{η}, the projection of $l_{\xi_{0}}$ on U_{η}, tends to a point $\eta_{0}:\left|\eta_{0}\right|<1, l_{\eta}$ determines an A.B.P., whence $\zeta_{0} \in A_{\zeta}$. This is absurd. Next, assume that l_{η} converges to an arc γ on $|\eta|=1$ such that $\gamma \cap A_{\eta} \neq 0$. Take a point $\eta_{0} \in A_{\eta}$ and let l^{\prime} be the radius terminating at η_{0}. Then l_{η} intersets l^{\prime} infinitely many times. It follows that l_{η} determines an A.B.P. angularly, because the image l_{ξ} on U_{ξ} of l_{η} and the image l_{ξ}^{\prime} of l^{\prime} tends to the same point ξ_{0} in U_{ξ}. Thus $\zeta_{0} \in A_{\zeta}$. Suppose l_{η}^{\prime} intersects an angular domain $A_{\eta}(\theta)$: $\left|\arg \left(1-e^{-i \theta} \eta\right)\right|<\frac{\pi}{2}-\delta, e^{-i \theta} \in A_{\eta}$ infinitely many times, then we have also that $\zeta_{0} \in A_{\zeta}$. Hence, if ζ tends in an angular domain $A_{\zeta}(\theta)$ at every point of $C A_{\zeta} \bigcap_{\xi} S_{\zeta} \cap_{\eta} S_{\zeta}, \quad \eta=\eta(\zeta)$ tends to $C A_{\eta}+C_{\xi} S_{\eta}$ or tends to A_{ζ} tangentially. Let $F(\zeta)$ and $F(\eta)$ be closed subsets in $C A_{\zeta} \cap_{\xi} S_{\zeta} \bigcap_{\eta} S_{\zeta}$ and in A_{η} respectively, and let $D_{\delta}(F(\zeta))$ and D_{δ} $(F(\eta))$ be domains such that $D_{\delta}(F(\zeta))$ and $D_{\delta}(F(\eta))$ contain angular endparts: $\arg \left|1-e^{-i \theta} \zeta\right|<\frac{\pi}{2}-\delta, e^{i \theta} \in F(\zeta)$ and $\arg \left|1-e^{-i \theta} \eta\right|<\frac{\pi}{2}-\delta$, $e^{i \theta} \in F(\eta)$ respectively and let $C_{r}^{\prime}(\zeta)$ and $C_{r}^{\prime}(\eta)$ be the rings such that $r<|\zeta|<1$ and $r<|\eta|<1(r<1)$. From above consideration, since $\xi=\xi(\eta)$ has angular limits in U_{ξ} at every point of A_{η}. There exists a subset $A_{\eta, n}$ of A_{η} such that angular limits at $A_{\eta, n}$ are contained in $|\xi|<1-\frac{1}{n}$ and mes $\left|A_{\eta}-A_{\eta, n}\right|<\frac{\varepsilon}{2}$. Therefore there exists a closed subset $F^{\prime}(\eta)$ of $A_{\eta, n}$ and r, for δ, such that mes $\left|A_{\eta, n}-F(\eta)\right|<\frac{\varepsilon}{2}$ and if $\eta \in\left(D_{\delta}(F(\eta)) \cap C_{r}^{\prime}(\eta)\right)$, then $|\xi(\eta)|<1-\frac{1}{2 n}$. On the other hand since $\xi=\xi(\zeta)$ has angular limits at every point $C A_{\xi} \cap_{\xi} S_{\zeta}$ which lie on $|\xi|=1$, there exist r^{\prime} and a closed subset $F(\zeta)$ of $C A_{\zeta}$ such that mes $\left|C A_{\zeta}-F(\zeta)\right|<\varepsilon$ and if $\zeta \in\left(D_{\delta}(F(\zeta)) \cap C_{\gamma^{\prime}}^{\prime}(\zeta)\right)$, then $\eta=\eta(\zeta) \notin D_{\delta}(F(\eta))$. Denote by $C_{r}(\eta)$ a circle such that $|\eta|<r(r<1)$ and let $v(\eta)$ be a continuous super-harmonic function in U_{η} such that $v(\eta)$ is harmonic in $D_{\delta}\left(F^{\prime}(\eta)\right) \cup C_{r}(\eta), v(\eta)=1$ on the boundary of $\left(D_{\delta}(F(\eta)) \cup C_{r}(\eta)\right)$ not lying on $|\eta|=1, v(\eta) \equiv 1$ on $U_{\eta}-\left(D_{\delta}(F(\eta))\left(C_{r}(\eta)\right)\right.$ and $v(\eta)=0$ on the boundary of $\left(\left(D_{\delta}(F(\eta)) \cup C_{r}(\eta)\right)\right.$ lying on $|\eta|=1$. Consider $v(\eta)$ on $C_{r^{\prime}}(\zeta) \cup D_{\delta}(F(\zeta))$, then $v(\zeta)=v(\eta)$ is a function such that $\lim v(\zeta)$ $=1$ when ζ tends to $F^{\prime}(\zeta)$. Since the boundary of ($C_{r^{\prime}}^{\prime}(\zeta) \cup D_{\delta}(F(\zeta))$) is rectifiable and we can take δ arbitrarily, we have $\mu\left(U_{\xi}, F(\zeta)\right)$ $\leqq \mu\left(U_{\eta}, C F(\eta)\right)$, where $\mu\left(U_{\xi}, F(\zeta)\right)$ and $\mu\left(U_{\eta}, C F(\eta)\right)$ are the lower envelopes of $\{\boldsymbol{v}(\zeta)\}$ which are the class of continuous super-harmonic
functions in $D_{\delta}(F(\zeta))$ such that $0 \leqq v(\zeta) \leqq 1$ and $\lim v(\zeta)=1$, when ζ tends to $F(\zeta)$ and of $\{v(\eta)\}$ respectively. Let $\varepsilon \rightarrow 0$. Then we have $\omega\left(U_{\zeta}, C A_{\zeta}\right) \leqq \omega\left(U_{\eta}, C A_{\eta}\right)$. Since A_{ζ} and A_{η} are measurable,

$$
\mu\left(\hat{R}, \mathfrak{A}\left(\hat{R}^{\infty}, \underline{R}^{*}\right)\right) \geqq \mu\left(R^{\infty}, \mathfrak{N}\left(R^{\infty}, \underline{R}^{*}\right)\right)
$$

Corollary. If the universal covering surface of the projection of R is hyperbolic and R is of F-type, then \hat{R} is also of F-type over \underline{R}^{*}, where \hat{R} is a covering surface over R.

If the universal covering surface of the projection \underline{R}^{\prime} of R is parabolic, remove a finite number of point $p_{i}(i=1,2, \ldots n)$ so that ($\left.\underline{R}^{\prime}-\sum_{i=1}^{n} p_{i}\right)^{\infty}$ may be hyperbolic. Let \hat{R} be a covering surface R and let $p_{i j}(j=1,2, \ldots)$ be points of R lying on p_{i} and $p_{i j k}(k=1,2, \ldots)$ be points of \hat{R} lying on $p_{i j}$. Put $\widetilde{R}=R-\sum_{i j} p_{i j}$ and $\widetilde{\widehat{R}}=\hat{R}-\sum_{i j k} p_{i j k}$. We map $R^{\infty}, \tilde{R}, \hat{R}^{\infty}$ and $\tilde{\hat{R}}^{\infty}$ and $\left(\underline{R}^{\prime}-\sum_{i=1}^{n} p_{i}\right)^{\infty}$ onto $U_{\eta}:|\eta|<1, U_{\tilde{n}}$: $|\tilde{\eta}|<1, \quad U_{\zeta}:|\zeta|<1, U_{\tilde{\xi}}:|\tilde{\zeta}|<1$ and $U_{\xi}:|\xi|<1$ conformally respectively. Let $A_{\tilde{\eta}}$ and $A_{\tilde{\xi}}$ be images of A.B.P.'s of \widetilde{R} and $\widetilde{\hat{R}}$.

Theorem 3.3. Let R be a positive boundary Riemann surface. If R covers p_{i} so few times that $\sum G\left(z, p_{i j}\right)<\infty$ and if

$$
\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)=\mu\left(\hat{R}^{\infty}, \mathfrak{Y}\left(\tilde{R}^{\infty}, \underline{R}^{*}\right)\right)=\omega\left(U_{\tilde{\eta}}, A \tilde{\eta}\right)
$$

then for every covering surface \hat{R} over R,

$$
\mu\left(\hat{R}^{\infty}, \mathfrak{H}\left(\hat{R}^{\infty}, \underline{R}^{*}\right)\right)=\mu\left(\widetilde{\hat{R}}^{\infty}, \mathfrak{N}\left(\widetilde{\tilde{R}}^{\infty}, \underline{R}^{*}\right)\right)=\omega\left(U_{\tilde{\xi}}, A \tilde{\xi}\right)
$$

where $G\left(z, p_{i j}\right)$ is the Green's function of R with pole at $p_{i j}$.
Proof. 1) As to \hat{R}^{∞} and $\tilde{\hat{R}}^{\infty}$, let \hat{A}_{i} and $\widetilde{\widehat{A}}_{i}$ be the images of A.B.P.'s with projection on R of \hat{R}^{∞} and $\widehat{\widehat{R}}^{\infty}$ respectively. Then \hat{A}_{i} and $\widetilde{\hat{A}}_{i}$ are Borel sets and $\eta=\eta(\zeta)$ and $\eta=\eta(\tilde{\zeta})$ have angular limits contained in U_{η} at every points of \hat{A}_{i} and $\widetilde{\hat{A}}_{i}$. Let $\left\{\eta_{i_{j} s}\right\}$ $(s=1,2, \ldots)$ be images of $p_{i j}$ in U_{η} and let $\left\{\zeta_{i j k a}\right\}(t=1,2, \ldots)$ be images of $p_{i j k}$ in U_{ζ}. Since $\sum_{i j k} G\left(\hat{z}, p_{i j k}\right) \leqq \sum_{i j} G\left(z, p_{i j}\right)<\infty, \infty>\sum \log \left|\begin{array}{c}1-\eta \overline{\eta_{i j s}} \\ \eta-\eta_{i j s}\end{array}\right|$ $\geqq \sum \log \left|\frac{1-\bar{\zeta}_{i j k k} \zeta}{\zeta-\zeta_{i j k t}}\right|$ and $\sum\left(1-\left|\zeta_{i j k t}\right|\right)<\infty$, where $G\left(\hat{z}, p_{i j k}\right)$ is the Green's function of \widehat{R} with pole at $p_{i j k}$.

Let l and l^{\prime} be paths in \hat{R}^{∞} and $\widetilde{\widehat{R}}^{\infty}$ determining an A.B.P. not lying on $p_{i j}$ and not lying on $p_{i j k}$ respectively. Since we can deform l and l^{\prime} as little as we please, we can suppose that the projection of l and l^{\prime} do not pass $p_{i, j}$.
2) Let $\widetilde{\hat{A}_{i}^{\prime}}$ be the image of A.B.P.'s of $\tilde{\hat{R}}^{\infty}$ whose projection lie
on $p_{i j}$ of R. Since $\sum_{i j} G\left(z, p_{i j}\right)<\infty, \mu\left(\widetilde{\widetilde{R}}^{\infty}, \mathfrak{H}\left(\underset{\widetilde{\tilde{R}}^{\infty}}{\infty}, \sum p_{i j}\right)=0\right.$. We consider only A.B.P.'s not lying on $p_{i j}$. Since $\widetilde{\widehat{R}}^{\infty}$ and \hat{R}^{∞} are covering surfaces, we can consider \hat{A}_{i} and $\widetilde{\hat{A}}_{i}$ the images of A.B.P.'s of \widehat{R}^{∞} and $\widetilde{\widehat{R}}^{\infty}$ lying in U_{η}. Hence \hat{A}_{i} and $\tilde{\widehat{A}}_{\imath}$ are Borel sets. Since $\tilde{\hat{R}}^{\infty}$ is the universal covering surface of ($U_{\zeta}-\sum \zeta_{i j j_{k s}}$),

$$
\omega\left(U_{\xi}, \hat{A}_{i}\right)=\mu\left(\hat{R}, \mathfrak{M}\left(\hat{R}^{\infty}, R\right)\right) \geqq \mu\left(\widetilde{\hat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\hat{R}}^{\infty}, R\right)\right)=\omega\left(U_{\tilde{\xi}}, \widetilde{\hat{A}}_{i}\right) .
$$

Since $\mu\left(\tilde{\widehat{R}}^{\infty}, \mathfrak{A}\left(\tilde{\widehat{R}}^{\infty}, R\right)\right)$ is harmonic in $\tilde{\widehat{R}}, \mu\left(\tilde{\widehat{R}}^{\infty}, \mathfrak{Y}\left(\tilde{\widehat{R}}^{\infty}, R\right)\right)$ is a single valued harmonic function in U_{ζ}. We denote by E_{λ} the set on $|\zeta|=1$ where $\mu\left(\widetilde{\hat{R}}^{\infty}, \mathfrak{y}\left(\tilde{\hat{R}}^{\infty}, R\right)\right)$ has angular limits $\lambda(\lambda<1)$. We show mes $\left(\hat{A}_{i} \cap E_{\lambda}\right)=0$. Denote the radial segments from $\zeta_{i j \text { jat }}$ to $|\zeta|=1$ by $S_{i j k t}$ and put $\left(U_{\zeta}-\sum_{i, k t t} S_{i, j k t}\right)=U_{\zeta}^{\prime}$. Then U_{ζ}^{\prime} is a simply connected domain with a rectifiable boundary. Consider the function $\zeta=\zeta(\tilde{\zeta})$. Then the inverse fuction $\tilde{\zeta}=\tilde{\zeta}(\zeta)$ is also single valued and U_{ζ}^{\prime} is mapped into $U_{\tilde{\xi}}$ conformally such that the image of U_{ζ}^{\prime} covers U_{ζ} at most once. Let l_{ζ} be a radial path in U_{ζ}^{\prime} terminating at $\hat{A_{i}}$ and let $l_{\tilde{\zeta}}$ be the image in $U_{\tilde{\zeta}}$ of l_{ζ}. Then $l_{\tilde{\zeta}}$ is a path determining an A.B.P. lying on R. Hence $l_{\tilde{5}}$ tends to a point in $\tilde{\hat{A}}_{i}$. Let $\tilde{\widehat{A}}_{i}^{\prime}$ be the set of points which is an endpoint of $l_{\tilde{\xi}}$ above-mentioned. Then $\tilde{\hat{A}}_{i}^{\prime}\left(\subset \widetilde{\hat{A}}_{i}\right)$ is an analytic set. Since $\mu\left(\widetilde{\hat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\hat{R}}^{\infty}, R\right)\right)$ has limit λ along l_{ξ} when ζ tends to $\hat{A}_{i} \cap E_{\lambda}, \mu\left(\tilde{\widehat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\widehat{R}}^{\infty}, R\right)\right)$ has limit λ along the image $l_{\tilde{\zeta}}$ of l_{ζ}. Hence at every point of the image ($\left(\widehat{\hat{A}}_{i} \cap E_{\lambda}\right)$ of $\left(\hat{A}_{i} \cap E_{\lambda}\right) \mu\left(\hat{R}^{\infty}, \mathfrak{M}(\hat{R}, R)\right)$ has angular limits smaller than 1. Since $\mu\left(\widetilde{\widehat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\hat{R}}^{\infty}, R\right)\right)=\omega\left(U_{\tilde{\zeta}}^{\tilde{r}}, \tilde{A}_{i}\right), \operatorname{mes}\left(\widehat{\hat{A}_{i} \cap E_{\lambda}}\right)=0$. On the other hand, we map U_{ζ}^{\prime} ont $\left|\zeta^{\prime}\right|<1$. Then $\left|\zeta^{\prime}\right|<1$ is a covering surface over $U_{\tilde{\zeta}}$, and ($\hat{A}_{i} \cap E_{\lambda}$) is transformed to a set $\left(\hat{A}_{i} \cap E_{\lambda}\right)^{\prime}$ on $\left|\zeta^{\prime}\right|=1$. Then by Löwner's lemma, mes $\left(\hat{A}_{i} \cap E_{\lambda}\right)^{\prime} \leqq \operatorname{mes}\left(\widehat{\hat{A}_{i} \cap E_{\lambda}}\right)=0$. Since the boundary of U_{ξ}^{\prime} is rectifiable, mes $\left(\hat{A}_{i} \cap E_{\lambda}\right)=0$. Hence $\mu\left(\widetilde{\widehat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\widehat{R}}^{\infty}, R\right)\right)$ has angular limits 1 almost everywhere on \hat{A}_{i}. Thus $\mu\left(\hat{R}^{\infty}, \mathfrak{M}(\hat{R}, R)\right)$ $\leqq \mu\left(\tilde{\widehat{R}}^{\infty}, \mathfrak{Y}\left(\widetilde{\widetilde{R}}^{\infty}, R\right)\right)$ and $\mu\left(\widetilde{\widehat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\widehat{R}}^{\infty}, R\right)\right)=\mu\left(\widehat{R}^{\infty}, \mathfrak{H}\left(\widehat{R}^{\infty}, R\right)\right)$.

Consider $\mu\left(\widetilde{R}^{\infty}, \mathfrak{N}\left(\widetilde{R}^{\infty}, \underline{R}^{*}\right)\right)$ on $\widetilde{\hat{R}}^{\infty}$. Denote by $\widetilde{\hat{A}}$ the set on $|\zeta|=1$ where at least one curve determining an A.B.P. terminates and by $C \tilde{\hat{A}}$ its complement. We show $\mu\left(\widetilde{R}^{\infty}, \mathfrak{H}\left(\widetilde{R}^{\infty}, \underline{R}^{*}\right)\right)$ has angular limits 0 almost everywhere $C \tilde{\hat{A}}$. Assume there exists a set $\widetilde{\hat{E}}_{\delta}$ of
positive measure contained in $C \tilde{\hat{A}}$ where $\mu\left(\widetilde{R}^{\infty}, \mathfrak{A}\left(\widetilde{R}^{\infty}, \underline{R}^{*}\right)\right)$ has angular limits $\delta(\delta>0)$. Consider the mapping function $\xi=\xi(\tilde{\zeta}), \eta=\eta(\tilde{\zeta})$ and denote by ${ }_{\xi} S_{\tilde{\xi}}$ and by ${ }_{\eta} S_{\tilde{\xi}}$ the sets of point such that the corresponding functions $\xi=\xi(\tilde{\zeta})$ and $\eta=\eta(\tilde{\zeta})$ have angular limits on $|\xi| \leqq 1$ and $|\eta| \leqq 1$ respectively. On the other hand let \widetilde{A}_{η}^{n} be the set of \widetilde{A}_{η}, images of A.B.P.'s of \widetilde{R}^{∞} whose projection is contained in $|\xi|<1-\frac{1}{n}$. Then $\lim _{n=\infty}\left|\operatorname{mes}\left(\widetilde{A}_{\eta}-\widetilde{A}_{\eta}^{n}\right)\right|=0$. Let $l_{\tilde{\zeta}}$ be a Stolz's path terminating at $\widetilde{\widehat{E}}_{\delta}$ and let $l_{\tilde{\eta}}$ be its image. Then we see $l_{\tilde{\xi}}$ terminates at $A_{\tilde{\eta}}$ tangentially or $C A_{\tilde{\eta}}$ (Theorem 3.2). But since $\mu\left(\widetilde{R}, \mathfrak{H}\left(\widetilde{R}, \underline{R}^{*}\right)\right)$ has limits δ along l_{η}, l_{η} does not tend to a point where $\mu\left(\widetilde{R}, \mathfrak{M}\left(\widetilde{R}^{\infty}, \underline{R}^{*}\right)\right)$ has angular limits 0 . Therefore l_{η} tends to the set \widetilde{E}_{λ} where $\mu(\widetilde{R}$, $\left.\mathfrak{H}\left(\widetilde{R}^{\infty}, \underline{R}^{*}\right)\right)$ has angular limits $\lambda(0<\lambda<1)$ or to the set where $\mu\left(\widetilde{R}^{\infty}\right.$, $\left.\mathfrak{H}\left(\tilde{R}^{\infty}, \underline{R}^{*}\right)\right)=1$ tangentially. Now since mes $\left|E_{\lambda} \cap C A_{\tilde{\eta}}\right|=0$ and by Löwner's lemma, we have mes $\left|\widetilde{\widehat{E}}_{\delta}\right|=0$. Hence $\mu\left(\widetilde{\hat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\widehat{R}}^{\infty}, \underline{R}^{*}\right)\right)$ $\geqq \mu\left(\widetilde{R}, \mathfrak{A}\left(\tilde{R}, \underline{R}^{*}\right)\right)$. Let $A_{\tilde{\zeta}}^{b}$ be the set on $|\zeta|=1$ where at least one curve determining an A.B.P. not lying on R. Then $A_{\tilde{\xi}}^{b}$ is measurable and

$$
\mu\left(\tilde{\widehat{R}}^{\infty}, \mathfrak{H}\left(\tilde{\widehat{R}}^{\infty}, \underline{R}^{*}\right)\right)=\omega\left(U_{\zeta}, \tilde{\hat{A}}_{t}\right)+\omega\left(U_{\zeta}, A_{\tilde{\xi}}^{b}\right) \geqq \mu\left(\tilde{\widehat{R}}^{\infty}, \mathfrak{A}\left(\tilde{\widehat{R}}^{\infty}, R\right)\right)
$$

But $\mu\left(\widetilde{\widehat{R}}^{\infty}, \mathfrak{Y}\left(\widetilde{\hat{R}}^{\infty}, \underline{R}^{*}\right)\right) \geqq 0$ on $\widetilde{\hat{A}}_{i}$ where $\omega\left(U_{\tilde{亏}}, \widetilde{\hat{A}}_{i}\right)=1$ almost everywhere. Hence $\mu\left(\tilde{\hat{R}}^{\infty}, \mathfrak{H}\left(\tilde{\hat{R}}^{\infty}, \underline{R}^{*}\right)\right)$ has the same angular limits as $\operatorname{Min}\left[1, \mu\left(\tilde{\hat{R}}^{\infty}, \mathfrak{A}\left(\hat{R}^{\infty}, \underline{R}^{*}\right)\right)+\mu\left(\tilde{\hat{R}}^{\infty}, \mathfrak{Y}\left(\tilde{\hat{R}}^{\infty}, R\right)\right]\right.$. Since \hat{R}^{∞} is a covering surface over $R^{\infty}, \mu\left(\hat{R}^{\infty}, \mathfrak{M}\left(\hat{R}^{\infty}, \underline{R}^{*}\right) \leqq \operatorname{Min}\left[1, \mu\left(R^{\infty}, \mathfrak{M}\left(R^{\infty}, \underline{R}^{*}\right)\right)+\mu\left(\hat{R}^{\infty}\right.\right.\right.$, $\left.\left.\mathfrak{H}\left(\hat{R}^{\infty}, R\right)\right)\right]$. On the other hand by assumption $\mu\left(\tilde{R}^{\infty}, \mathfrak{H}\left(\tilde{R}, \underline{R}^{*}\right)\right)$ $\mathfrak{H}=\mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right)=\omega\left(U_{\tilde{\zeta}}, A_{\tilde{\mathfrak{\zeta}}}\right)$ and by 2) $\mu\left(\hat{R}^{\infty}, \mathfrak{H}\left(\hat{R}^{\infty}, R\right)\right)=\mu\left(\tilde{\hat{R}}^{\infty}\right.$, $\mathfrak{H}\left(\widetilde{\hat{R}}^{\infty}, R\right)$. Thus we have $\mu\left(\widetilde{\hat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\hat{R}}^{\infty}, \underline{R}^{*}\right)\right) \geqq \mu\left(\hat{R}^{\infty}, \mathfrak{H}\left(\hat{R}^{\infty}, \underline{R}^{*}\right)\right)$. The inverse inequality is clear, because $\widetilde{\hat{R}}^{\infty}$ is a covering surface over \hat{R}^{∞}. Therefore

$$
\mu\left(\widehat{R}^{\infty}, \mathfrak{M}\left(\widetilde{\hat{\tilde{R}}}^{\infty}, \underline{R}^{*}\right)\right)=\mu\left(\tilde{\hat{R}}^{\infty}, \mathfrak{H}\left(\widetilde{\hat{\tilde{R}}}^{\infty}, \underline{R}^{*}\right)\right) .
$$

We show that the D-typeness of R does not necessarily imply the D-typeness of \hat{R} by an example.

Example. Let $\left\{B_{2 n}, B_{2 n+1}\right\}$ be domains shown in the figure and construct a holomorphic function of the same kind as in example in "Dirichlet Problem. II". Remove from the unit-circle all the points such that $f(z)=0,1$, or 2 and let R be the remaining surface. Then

If we consider R^{∞} as a covering surface \hat{R} over R, we see that \hat{R} is not of D type, but R is a covering surface of D-type.

From the results obtained till now, we see that the measure $\mu\left(R^{\infty}, \mathfrak{A}\left(R^{\infty}, \underline{R}^{*}\right)\right)$ under the condition that the universal covering surface of the projection of R is hyperbolic, depend on the size of $\mathfrak{H}\left(R, \underline{R}^{*}\right)$. The B-typeness and F-typeness depend also on it. Hence theorems 1, 2 and 3 will be natural. On the other hand $\mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)$ and D-typeness of R depend not only the size of $\mathfrak{M}\left(R, \underline{R}^{*}\right)$ but on the structure of R and $\mathfrak{H}\left(R, \underline{R}^{*}\right)$, i.e. the class of super-harmonic function $\{v(z)\}$ defining $\mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)$. The class is so small that we may have $\mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)=1$ on some complicated Riemann surface. Therefore the possibility of the fact that the D-typeness of R does not yield the D-typeness of \hat{R} will be understood.

