174. Dirichlet Problem on Riemann Surfaces. III (Types of Covering Surfaces)

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Let \underline{R} be a null-boundary Riemann surface and let R be a positive boundary Riemann surface given as a covering surface.

1) If $\mu(R, \mathfrak{A}(R, \underline{R}^*))=1$, we call R a covering surface of D-type over \underline{R} .

2) We map \mathbb{R}^{∞} onto the unit-circle $U_{\xi}: |\xi| < 1$ conformally. If the composed function $\underline{z} = \underline{z}(\xi): U_{\xi} \to \mathbb{R} \to \underline{\mathbb{R}}^{*}$ has angular limits with respect to $\underline{\mathbb{R}}$ almost everywhere on $|\xi| = 1$. We call \mathbb{R} a covering surface of F-type over $\underline{\mathbb{R}}$.

3) Let T(r) be the characteristic function of the mapping $R \rightarrow \underline{R}$. If T(r) is bounded, we say, R is a covering surface of bounded type. By Theorem 1.1, it is easy to see that we have

Bounded type $\xrightarrow{1}{\mathcal{Y}}$ *F*-type \rightarrow *D*-type, and that *F*-type implies $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*}))=1$. If the universal covering surface of the projection of *R* is hyperbolic, $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*}))=1$ implies that *R* is a covering surface of *F*-type, because $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}))=0$.

Let \hat{R} be a covering surface over R. In the following, we investigate the relations between Riemann surface \hat{R} and R. By Theorem 1.1 we have at once the following

Theorem 3.1. If R is a covering surface of bounded type, then \hat{R} is also of bounded type relative to \underline{R} .

Theorem 3.2. Let R be a covering surface such that the universal covering surface of the projection \underline{R}'^{∞} of R is hyperbolic. We map \underline{R}'^{∞} , R^{∞} and \widehat{R}^{∞} conformally onto the unit-circles $U_{\xi}:|\xi| < 1, U_{\eta}:|\eta| < 1$ and $U_{\zeta}:|\zeta| < 1$ respectively. Let $\eta = \eta(\zeta), \ \xi = \xi(\zeta)$ and $\xi = \xi(\eta)$ be mappings $U_{\zeta} \rightarrow U_{\eta}, U_{\zeta} \rightarrow U_{\xi}$ and $U_{\zeta} \rightarrow U_{\xi}$ respectively. Then we have $\mu(\widehat{R}, \mathfrak{A}(\widehat{R}, \underline{R}^{*})) \geq \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*})).$

Proof. Since $\mu(\underline{R}'^{\infty}, \mathfrak{A}(\underline{R}'^{\infty}, B)) = \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, B)) = \mu(\widehat{R}, \mathfrak{A}(\widehat{R}, B)) = 0$ without loss of generality, we can suppose that every A.B.P. lies on <u>R</u>. Let A_{η} and A_{ζ} be images of $\mathfrak{A}(R^{\infty}, \underline{R})$ and $\mathfrak{A}(\widehat{R}, \underline{R})$ respectively, and let ${}_{\eta}S_{\zeta}, {}_{\xi}S_{\zeta}$ and ${}_{\xi}S_{\eta}$ be the sets where the corresponding functions

¹⁾ \rightarrow means implication.

²⁾ Measure of a set of A.B.P.'s of R^{∞} with projections on the ideal boundary B of <u>R</u>.

have angular limits on \overline{U}_{η} : $|\eta| \leq 1$, \overline{U}_{ζ} : $|\zeta| \leq 1$ and \overline{U}_{η} : $|\eta| \leq 1$ respectively. Then $\operatorname{mes}_{\eta}S_{\tau} = \operatorname{mes}_{\xi}S_{\tau} = \operatorname{mes}_{\xi}S_{\eta} = 2\pi$. Take a point $\zeta_0 \in ({}_{\xi}S_{\zeta} \cap {}_{\eta}S_{\zeta} \cap CA_{\zeta})$ and let l_{ζ_0} be the radius terminating at ζ_0 , where CA_{ζ} is the complementary set of A_{ζ} with respect to the circumference of U_{ζ} . If l_{η} , the projection of l_{ζ_0} on U_{η} , tends to a point $\eta_0: |\eta_0| < 1$, l_{η} determines an A.B.P., whence $\zeta_0 \in A_{\zeta}$. This is absurd. Next, assume that l_{γ} converges to an arc γ on $|\eta|=1$ such that $\gamma \cap A_{\eta} \neq 0$. Take a point $\eta_0 \in A_{\eta}$ and let l' be the radius terminating at η_0 . Then l_{η} intersets l' infinitely many times. It follows that l_{η} determines an A.B.P. angularly, because the image l_{ε} on U_{ε} of l_{η} and the image l'_{ε} of l' tends to the same point ε_{0} in U_{ξ} . Thus $\zeta_0 \in A_{\zeta}$. Suppose l'_{η} intersects an angular domain $A_{\eta}(\theta)$: $|\arg(1-e^{-i heta}\eta)|\!<\!rac{\pi}{2}\!-\!\delta,\;e^{-i heta}\in A_\eta$ infinitely many times, then we have also that $\zeta_0 \in A_{\zeta}$. Hence, if ζ tends in an angular domain $A_{\zeta}(\theta)$ at every point of $CA_{\zeta} \cap {}_{\xi}S_{\zeta} \cap {}_{\eta}S_{\zeta}$, $\eta = \eta(\zeta)$ tends to $CA_{\eta} + C_{\xi}S_{\eta}$ or tends to A_{ζ} tangentially. Let $F(\zeta)$ and $F(\eta)$ be closed subsets in $CA_{\zeta} \cap {}_{\xi}S_{\zeta} \cap_{\eta}S_{\zeta}$ and in A_{η} respectively, and let $D_{\delta}(F(\zeta))$ and D_{δ} $(F(\eta))$ be domains such that $D_{\delta}(F(\zeta))$ and $D_{\delta}(F(\eta))$ contain angular $\text{ endparts: } \ \text{ arg} \mid 1 - e^{-i\theta} \zeta \mid < \frac{\pi}{2} - \delta, \ e^{i\theta} \in F(\zeta) \ \text{ and } \ \text{ arg} \mid 1 - e^{-i\theta} \eta \mid < \frac{\pi}{2} - \delta,$ $e^{i\theta} \in F(\eta)$ respectively and let $C'_r(\zeta)$ and $C'_r(\eta)$ be the rings such that $r < |\zeta| < 1$ and $r < |\eta| < 1$ (r < 1). From above consideration, since $\xi = \xi(\eta)$ has angular limits in U_{ξ} at every point of A_{η} . There exists a subset $A_{\eta,n}$ of A_{η} such that angular limits at $A_{\eta,n}$ are contained in $|\xi| < 1 - \frac{1}{n}$ and mes $|A_{\eta} - A_{\eta,n}| < \frac{\varepsilon}{2}$. Therefore there exists a closed $\text{subset } \vec{F(\eta)} \text{ of } A_{\eta,n} \text{ and } r, \text{ for } \delta, \text{ such that } \max |A_{\eta,n} - F(\eta)| \! < \! \frac{\varepsilon}{2} \text{ and}$ if $\eta \in (D_{\delta}(F(\eta)) \cap C'_{r}(\eta))$, then $|\xi(\eta)| < 1 - \frac{1}{2n}$. On the other hand since $\hat{\xi} = \hat{\xi}(\zeta)$ has angular limits at every point $CA_{\zeta} \cap_{\xi}S_{\zeta}$ which lie on $|\xi|=1$, there exist r' and a closed subset $F(\zeta)$ of CA_{ζ} such that $\operatorname{mes} |CA_{\zeta} - F(\zeta)| < \varepsilon \text{ and if } \zeta \in (D_{\delta}(F(\zeta)) \cap C'_{r'}(\zeta)), \text{ then } \eta = \eta(\zeta) \notin D_{\delta}(F(\eta)).$ Denote by $C_r(\eta)$ a circle such that $|\eta| < r(r < 1)$ and let $v(\eta)$ be a continuous super-harmonic function in U_{η} such that $v(\eta)$ is harmonic in $D_{\delta}(F(\eta)) \cup C_r(\eta)$, $v(\eta) = 1$ on the boundary of $(D_{\delta}(F(\eta)) \cup C_r(\eta))$ not lying on $|\eta|=1$, $v(\eta)\equiv 1$ on $U_{\eta}-(D_{\delta}(F(\eta)) \cup C_{r}(\eta))$ and $v(\eta)=0$ on the boundary of $((D_{\delta}(F(\eta)) \cup C_r(\eta)))$ lying on $|\eta| = 1$. Consider $\nu(\eta)$ on $C_{r'}(\zeta) \cup D_{\delta}(F(\zeta)),$ then $v(\zeta) = v(\eta)$ is a function such that $\lim v(\zeta)$ =1 when ζ tends to $F(\zeta)$. Since the boundary of $(C'_{r'}(\zeta) \cup D_{\delta}(F(\zeta)))$ is rectifiable and we can take δ arbitrarily, we have $\mu(U_{\mathfrak{r}},F(\zeta))$ $\leq \mu(U_{\eta}, CF(\eta))$, where $\mu(U_{\zeta}, F(\zeta))$ and $\mu(U_{\eta}, CF(\eta))$ are the lower envelopes of $\{v(\zeta)\}$ which are the class of continuous super-harmonic

functions in $D_{\delta}(F(\zeta))$ such that $0 \leq \nu(\zeta) \leq 1$ and $\lim \nu(\zeta) = 1$, when ζ tends to $F(\zeta)$ and of $\{\nu(\eta)\}$ respectively. Let $\varepsilon \to 0$. Then we have $\omega(U_{\zeta}, CA_{\zeta}) \leq \omega(U_{\eta}, CA_{\eta})$. Since A_{ζ} and A_{η} are measurable,

 $\mu(\hat{R}, \mathfrak{A}, \mathfrak{A}(\hat{R}, \underline{R}^*)) \geq \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^*)).$

Corollary. If the universal covering surface of the projection of R is hyperbolic and R is of F-type, then \hat{R} is also of F-type over \underline{R}^* , where \hat{R} is a covering surface over R.

If the universal covering surface of the projection \underline{R}' of R is parabolic, remove a finite number of point $p_i (i=1,2,\ldots n)$ so that $(\underline{R}'-\sum_{i=1}^n p_i)^{\infty}$ may be hyperbolic. Let \hat{R} be a covering surface R and let $p_{ij} (j=1,2,\ldots)$ be points of R lying on p_i and $p_{ijk} (k=1,2,\ldots)$ be points of \hat{R} lying on p_{ij} . Put $\tilde{R}=R-\sum_{ij}p_{ij}$ and $\tilde{R}=\hat{R}-\sum_{i\neq k}p_{ijk}$. We map R^{∞} , \tilde{R}'' , \hat{R}'' and \tilde{R}'' and $(\underline{R}'-\sum_{i=1}^n p_i)^{\infty}$ onto $U_{\eta}:|\eta|<1, U_{\tilde{\eta}}:$ $|\tilde{\eta}|<1, U_{\chi}:|\zeta|<1, U_{\tilde{\chi}}:|\tilde{\zeta}|<1$ and $U_{\xi}:|\xi|<1$ conformally respectively. Let $A_{\tilde{\eta}}$ and $A_{\tilde{\chi}}$ be images of A.B.P.'s of \tilde{R} and \tilde{R} .

Theorem 3.3. Let R be a positive boundary Riemann surface. If R covers p_i so few times that $\sum G(z, p_{ij}) < \infty$ and if

$$\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*})) = \mu(\widehat{R}, \mathfrak{A}(\widetilde{R}, \underline{R}^{*})) = \omega(U_{\eta}, A_{\eta}),$$
every covering surface \widehat{R} over R

then for every covering surface
$$\hat{R}$$
 over R ,

$$\mu(\hat{R}, \mathfrak{A}(\hat{R}, \underline{R}^*)) = \mu(\hat{R}, \mathfrak{A}(\hat{R}, \underline{R}^*)) = \omega(U_{\tilde{z}}, A_{\tilde{z}}),$$

where $G(z, p_{ij})$ is the Green's function of R with pole at p_{ij} .

Proof. 1) As to \hat{R}^{∞} and $\tilde{\hat{R}}^{\infty}$, let \hat{A}_i and $\tilde{\hat{A}}_i$ be the images of A.B.P.'s with projection on R of \hat{R}^{∞} and $\hat{\tilde{R}}^{\infty}$ respectively. Then \hat{A}_i and \tilde{A}_i are Borel sets and $\eta = \eta(\zeta)$ and $\eta = \eta(\tilde{\zeta})$ have angular limits contained in U_{η} at every points of \hat{A}_i and \tilde{A}_i . Let $\{\eta_{ijs}\}$ $(s=1, 2, \ldots)$ be images of p_{ij} in U_{η} and let $\{\zeta_{ijkk}\}$ $(t=1, 2, \ldots)$ be images of p_{ijk} in U_{ζ} . Since $\sum_{ijk} G(\hat{z}, p_{ijk}) \leq \sum_{ij} G(z, p_{ij}) < \infty$, $\infty > \sum \log \left| \frac{1 - \eta \eta_{ijk}}{\eta - \eta_{ijk}} \right| \geq \sum \log \left| \frac{1 - \bar{\zeta}_{ijkk} \zeta}{\zeta - \zeta_{ijkk}} \right|$ and $\sum (1 - |\zeta_{ijkk}|) < \infty$, where $G(\hat{z}, p_{ijk})$ is the Green's function of \hat{R} with pole at p_{ijk} .

Let l and l' be paths in \hat{R}^{∞} and \hat{R}^{\sim} determining an A.B.P. not lying on p_{ij} and not lying on p_{ijk} respectively. Since we can deform l and l' as little as we please, we can suppose that the projection of l and l' do not pass p_{ij} .

2) Let \tilde{A}'_i be the image of A.B.P.'s of \tilde{R}^{\sim} whose projection lie

Z. KURAMOCHI

on p_{ij} of R. Since $\sum_{ij} G(z, p_{ij}) < \infty$, $\mu(\tilde{\hat{R}}, \mathfrak{U}(\tilde{\hat{R}}, \sum p_{ij}) = 0$. We consider only A.B.P.'s not lying on p_{ij} . Since $\tilde{\hat{R}}$ and $\hat{\hat{R}}$ are covering surfaces, we can consider \hat{A}_i and $\tilde{\hat{A}}_i$ the images of A.B.P.'s of $\hat{\hat{R}}^{\infty}$ and $\tilde{\hat{R}}^{\infty}$ lying in U_{η} . Hence \hat{A}_i and $\tilde{\hat{A}}_i$ are Borel sets. Since $\tilde{\hat{R}}^{\infty}$ is the universal covering surface of $(U_{\chi} - \sum \zeta_{ijks})$,

$$\omega(U_{\mathfrak{r}},\hat{A}_{i}) \!=\! \mu(\hat{R}, \mathfrak{A}(\hat{R}, R)) \!\geq\! \mu(\tilde{\hat{R}}, \mathfrak{A}(\hat{R}, R)) \!=\! \omega(U_{\mathfrak{r}}, \tilde{\hat{A}}_{i}).$$

Since $\mu(\hat{R}, \mathfrak{A}(\hat{R}, R))$ is harmonic in \hat{R} , $\mu(\hat{R}, \mathfrak{A}(\hat{R}, R))$ is a single valued harmonic function in U_{ζ} . We denote by E_{λ} the set on $|\zeta|=1$ where $\mu(\widehat{\hat{R}}, \mathfrak{A}(\widehat{\hat{R}}, R))$ has angular limits $\lambda(\lambda < 1)$. We show $\operatorname{mes}(\widehat{A}_i \cap E_{\lambda}) = 0.$ Denote the radial segments from ζ_{ijk} to $|\zeta| = 1$ by S_{ijkl} and put $(U_{\zeta} - \sum_{\zeta \in U_{\ell}} S_{ijkl}) = U'_{\zeta}$. Then U'_{ζ} is a simply connected domain with a rectifiable boundary. Consider the function $\zeta = \zeta(\tilde{\zeta})$. Then the inverse function $\tilde{\zeta} = \tilde{\zeta}(\zeta)$ is also single valued and U'_{z} is mapped into $U_{\tilde{\tau}}$ conformally such that the image of U'_{τ} covers $U_{\tilde{z}}$ at most once. Let l_{z} be a radial path in U'_{z} terminating at \hat{A}_{i} and let $l_{\tilde{z}}$ be the image in $U_{\tilde{z}}$ of l_{z} . Then $l_{\tilde{z}}$ is a path determining an A.B.P. lying on R. Hence $l_{\tilde{z}}$ tends to a point in $\tilde{\tilde{A}}_i$. Let $\tilde{\tilde{A}}'_i$ be the set of points which is an endpoint of $l_{\tilde{z}}$ above-mentioned. Then $\widetilde{A}'_i(\subset \widetilde{A}_i)$ is an analytic set. Since $\mu(\widetilde{\widetilde{R}}, \mathfrak{A}(\widetilde{\widetilde{R}}, R))$ has limit λ along l_{\sharp} when ζ tends to $\hat{A}_i \cap E_{\lambda}$, $\mu(\widetilde{\hat{R}}, \mathfrak{A}(\widetilde{\hat{R}}, R))$ has limit λ along the image $l_{\tilde{z}}$ of l_{z} . Hence at every point of the image $(\widehat{\hat{A}_{i} \cap E_{\lambda}})$ of $(\hat{A}_i \cap E_{\lambda}) \mu(\hat{R}, \mathfrak{A}, \hat{R}, \mathbb{R})$ has angular limits smaller than 1. Since $\mu(\widetilde{\hat{R}}, \mathfrak{A}(\widetilde{\hat{R}}, R)) = \omega(U_{\widetilde{z}}, \widetilde{A}_i), \ \operatorname{mes}(\widetilde{\hat{A}_i \cap E_\lambda}) = 0. \quad \text{On the other hand,}$ we map U'_{ζ} ont $|\zeta'| < 1$. Then $|\zeta'| < 1$ is a covering surface over $U_{\tilde{\zeta}}$, and $(\hat{A}_i \cap E_{\lambda})$ is transformed to a set $(\hat{A}_i \cap E_{\lambda})'$ on $|\zeta'| = 1$. Then by Löwner's lemma, $\operatorname{mes}(\widehat{A}_i \cap E_{\lambda})' \leq \operatorname{mes}(\widetilde{A}_i \cap E_{\lambda}) = 0$. Since the boundary of U'_{ζ} is rectifiable, $\operatorname{mes}(\widehat{A}_i \cap E_{\lambda}) = 0$. Hence $\mu(\widetilde{\widetilde{R}}, \mathfrak{A}(\widetilde{\widetilde{R}}, R))$ has angular limits 1 almost everywhere on \hat{A}_i . Thus $\mu(\hat{R}, \mathfrak{A}(\hat{R}, R))$ $\leq \mu(\widetilde{\hat{R}}, \widetilde{\mathfrak{A}}(\widetilde{\hat{R}}, R)) \text{ and } \mu(\widetilde{\hat{R}}, \widetilde{\mathfrak{A}}(\widetilde{\hat{R}}, R)) = \mu(\widehat{R}, \widetilde{\mathfrak{A}}(\widehat{R}, R)).$

Consider $\mu(\widetilde{R}, \mathfrak{A}(\widetilde{R}, \underline{R}^*))$ on \widetilde{R} . Denote by \widetilde{A} the set on $|\zeta|=1$ where at least one curve determining an A.B.P. terminates and by $C\widetilde{A}$ its complement. We show $\mu(\widetilde{R}, \mathfrak{A}(\widetilde{R}, \underline{R}^*))$ has angular limits 0 almost everywhere $C\widetilde{A}$. Assume there exists a set \widetilde{E}_{δ} of

positive measure contained in $C\widetilde{\hat{A}}$ where $\mu(\widetilde{R}, \widetilde{\mathfrak{A}}(\widetilde{R}, R^*))$ has angular limits $\delta(\delta > 0)$. Consider the mapping function $\xi = \xi(\tilde{\zeta}), \eta = \eta(\tilde{\zeta})$ and denote by ${}_{\xi}S_{\tilde{z}}$ and by ${}_{\eta}S_{\tilde{z}}$ the sets of point such that the corresponding functions $\xi = \xi(\tilde{\zeta})$ and $\eta = \eta(\tilde{\zeta})$ have angular limits on $|\xi| \leq 1$ and $|\eta| \leq 1$ respectively. On the other hand let \widetilde{A}_{η}^{n} be the set of \widetilde{A}_{η} , images of A.B.P.'s of \widetilde{R}^{∞} whose projection is contained in $|\xi| < 1 - \frac{1}{n}$. Then $\lim |\max(\widetilde{A}_{\eta} - \widetilde{A}_{\eta}^{n})| = 0.$ Let $l_{\tilde{z}}$ be a Stolz's path terminating at $\tilde{\widetilde{E}}_{s}$ and let $l_{\tilde{\tau}}$ be its image. Then we see $l_{\tilde{\tau}}$ terminates at $A_{\tilde{\tau}}$ tangentially or $CA_{\tilde{\tau}}$ (Theorem 3.2). But since $\mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R^*))$ has limits δ along l_{η} , l_{η} does not tend to a point where $\mu(\widetilde{R}, \widetilde{\mathfrak{A}}(\widetilde{R}, \underline{R}^*))$ has angular limits 0. Therefore l_{η} tends to the set \widetilde{E}_{λ} where $\mu(\widetilde{R}, \widetilde{R})$ $\mathfrak{A}(\widetilde{R}, \underline{R}^*))$ has angular limits $\lambda(0 < \lambda < 1)$ or to the set where $\mu(\widetilde{R}, \underline{R}^*)$ $\mathfrak{A}(\widetilde{R}, \underline{R}^*)) = 1$ tangentially. Now since $\operatorname{mes} | E_{\lambda} \cap CA_{\widetilde{\eta}} | = 0$ and by Löwner's lemma, we have mes $|\widetilde{E}_{\delta}| = 0$. Hence $\mu(\widetilde{\widetilde{R}}, \mathfrak{A}(\widetilde{\widetilde{R}}, \underline{R}^*))$ $\geq \mu(\widetilde{R}, \widetilde{\mathfrak{A}}(\widetilde{R}, \underline{R}^*)).$ Let $A_{\widetilde{\tau}}^{\flat}$ be the set on $|\zeta| = 1$ where at least one curve determining an A.B.P. not lying on R. Then $A_{\mathfrak{T}}^{h}$ is measurable and

$$\mu(\widetilde{\widetilde{R}}, \widetilde{\mathfrak{A}}(\widetilde{\widetilde{R}}, \underline{\underline{R}}^{*})) = \omega(U_{\mathfrak{r}}, \widetilde{\widetilde{A}}_{\mathfrak{t}}) + \omega(U_{\mathfrak{r}}, A^{b}_{\mathfrak{r}}) \geq \mu(\widetilde{\widetilde{R}}, \widetilde{\mathfrak{A}}(\widetilde{R}, R)).$$

But $\mu(\hat{R}, \mathfrak{A}(\hat{R}, \underline{R}^*)) \geq 0$ on \hat{A}_i where $\omega(U_{\tilde{\zeta}}, \hat{A}_i) = 1$ almost everywhere. Hence $\mu(\tilde{R}, \mathfrak{A}(\tilde{R}, \underline{R}^*))$ has the same angular limits as $\operatorname{Min}[1, \mu(\tilde{R}, \mathfrak{A}(\hat{R}, \underline{R}^*)) + \mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R)]$. Since \hat{R}^{∞} is a covering surface over $R^{\infty}, \mu(\hat{R}, \mathfrak{A}(\hat{R}, \underline{R}^*)) \leq \operatorname{Min}[1, \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^*)) + \mu(\hat{R}, \mathfrak{A}(\tilde{R}, R))]$. On the other hand by assumption $\mu(\tilde{R}, \mathfrak{A}(\tilde{R}, \underline{R}^*)) = \mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R)) = \mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R))$. Thus we have $\mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R)) \geq \mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R)) = \mu(\tilde{R}, \mathfrak{A}(\tilde{R}, R))$. The inverse inequality is clear, because \tilde{R} is a covering surface over \tilde{R} . Therefore

$$\mu(\widehat{R}, \mathfrak{A}, \widetilde{\mathfrak{A}}(\widetilde{\widehat{R}}, \underline{R}^*)) = \mu(\widetilde{\widehat{R}}, \mathfrak{A}(\widetilde{\widehat{R}}, \underline{R}^*)).$$

We show that the *D*-typeness of *R* does not necessarily imply the *D*-typeness of \hat{R} by an example.

Example. Let $\{B_{2n}, B_{2n+1}\}$ be domains shown in the figure and construct a holomorphic function of the same kind as in example in "Dirichlet Problem. II". Remove from the unit-circle all the points such that f(z)=0, 1, or 2 and let R be the remaining surface. Then

$$1 = \mu(R, \mathfrak{A}(R, \underline{R}^*)) > \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^*)).$$

If we consider R^{∞} as a covering surface \hat{R} over R, we see that \hat{R} is not of Dtype, but R is a covering surface of D-type.

From the results obtained till now, we see that the measure $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^*))$ under the condition that the universal covering surface of the projection of R is hyperbolic, depend on the size of $\mathfrak{A}(R, \underline{R}^*)$. The *B*-typeness and *F*-typeness

depend also on it. Hence theorems 1, 2 and 3 will be natural. On the other hand $\mu(R, \mathfrak{A}(R, \underline{R}^*))$ and *D*-typeness of *R* depend not only the size of $\mathfrak{A}(R, \underline{R}^*)$ but on the structure of *R* and $\mathfrak{A}(R, \underline{R}^*)$, i.e. the class of super-harmonic function $\{\upsilon(z)\}$ defining $\mu(R, \mathfrak{A}(R, \underline{R}^*))$. The class is so small that we may have $\mu(R, \mathfrak{A}(R, \underline{R}^*))=1$ on some complicated Riemann surface. Therefore the possibility of the fact that the *D*-typeness of *R* does not yield the *D*-typeness of \hat{R} will be understood.