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Next we shall consider the function analytic interior to the
circle C. and with singularities of Y type on C. Such functions
can be constructed by

(13) f(z)=q(z) / ,Zlq(z)y(z; a); a--Re,
where cp(z) and opt(z) are functions single valued and analytic on and
within the circle C., and a are points on C not necessarily distinct.
For such unctions, we have the following theorem.

Theorem 2. Let P(z; f) be partial sums of the power series of
f(z) represented by (13). Then

14) lim.oo n(Rp(z;f) 0 or z I:>R,

where p is the minimal real part of m in (13). Accordingly, P(z; f)
diverges at every point exterior to the circle C as n tends to infinity.

In the proof of this theorem, it is convenient to have the
following lemma.

Lemma 3. Let A; k=l, 2,..., N be a given set of complex
numbers not all equal to zeros. Let a; k-l, 2,..., N be mutually
distinct angles between zero and 2, and q; k=l, 2,..., N be a set
of real numbers. Then we have

A O-qlogn+na)(15) lim,,l_ [>0.
For a real number q not equal to zero, the relation

can be verified by the well-known formula

hen we hae for no equal

F(iq + 1) [oj [1 e-(*+)]

1 --e-(+ --- 1--e-(’+) J
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by partial integrations. The last side members converge respective
ly to zeros as n-->, as the minimal absolute value of 1-e-(t+ is
positive for a not equal to zero. Thus we have

(16) lim.l--
And we can verify that this equality is valid even for q equal to
zero.

Now we shall prove the lemma. If we assume the equation

A --(qlogn+na)O

we have, for A which can be assumed not to be zero,

lim.[A +:Ae
while the arithmetic means

tend to A as n by (16). This contradicts the assumption.

Thus the lemma has been proved.

Now we shall prove Theorem 2. Let p be the minimum
of the real part of m,. From Theorem 1, we have, for z exterior
o C,

n P,(z;f)-n
t"+’ t z)

N A -i(qklogn+nak)n-$k

where p and q are respectively the real and imaginal part of m,,
A=0 if p<p.and A are equal respectively to A if p=p and

Now the relation (14) follows at once from Lemma 3. The
theorem has been established.

3. In this paragraph, we consider the divergence of polynomials
which interpolate to such a function considered in the previous
paragraph.

Let f(z) be a function single valued and analytic whithin he
circle C; z=R>l and with singularities of Y type on C. Tha
is, f(z) is represented by (13). Let be given a set of points
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(17)

which do not lie exterior to the unit circle C; [zl=l. The sequence
of polynomials S,(z; f) of respective degrees n ound by interpola-
tion to f(z) in the points z), z:),..., z(’)/ is defined by

(18)

where

1 fc.W+(t)- W.+(z) cp(t) dtA(z; f)-i w/(t) t- z

+,y(W/(t)w+(t)- W+(z)zZCP(t)dt; a),
W/(z)= (z- z"))(z- z)) (z- z2).

Let the points (17) satisfy the condition that the sequence
W(z)/z" converges to a function non-vanishing and analytic or z
exterior to the unit circle. That is, 2or any real number r greater
than unity,

(19) lim.W(z)-(z)O uniformly for
z

The sequence of polynomials S(z;f) which interpolate to f(z)
in all the zeros .of W+(z) which satisfy the condition (19) has prop-
erties similar to those of the power series considered in paragraph
2. At first, we consider the following

Theorem 3. Let W(z) be the sequence of polynomials of re-
spective degrees n such that the sequence W,(z)/z converges to a func-
tion (z) non-vanishing and analytic for z exterior to the unit circle
C; [z l= 1, and uniformly on any finite closed set exterior to C. Let
q(z) be a function single valued and analytic on and within the circle
C. Then the sequence of polynomials S,(z; qy) of respective degrees
n which interpolate to q(z)y(z; a) in all the zeros W,+(z) converges to
q(z)y(z; a) for z interior to C. The sequence S,(z; qy) diverges at
every point exterior to Cn. Moreover, we have

(20) limn( a )- S(z; qy)-BO.

The first part of the theorem, that is the convergence of
S,(z; qy) has been well known. (C. Walsh: Interpolations and Ap-
proximations, American Mathematical Society Colloquium Publica-
tions (1935).)

Now we shall prove the relation (20). By the method similar
to the proof of Theorem 1, we have
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t- Z’

-z;-i W/(t) t z;
_na,.+(z) y(t_(+. (t) a),(t)(t -z)’

We can verify that the last term of the last members tends
to zero as n-o by the method used in the proof o2 Lemma 2, that
is by partial integrations as

d{ 1 t/ }.(t) W./t) j-l’ 2,...,p

converge respectively to zeros uniformly on C as n tends to in-
finity. And the first term of the last side members tends to

=B#O for lzl>R.

Thus the theorem has been established.

Next we shall consider the behavior of S(z; f) which interpolate
to f(z) defined by (13) in all the zeros of W,+(z).

Theorem 4. Let f(z) be the function represented by (13). Let
W,(z) be the sequence of polynomials of respective degrees n such as the
sequence Wn(z)/z converges to a function 2(z) non-vanishing and analyt-
ic for z exterior to the unit circle C, and uniformly on any finite
closed set exterior to C. Then the sequence of polynomials S(z; f)
of respective degrees n which interpolate to f(z) in all the zeros of
W,+l(z) converges to f(z) for z interior to CR. The sequence S(z;f)
diverges at every point exterior to CR. Moreover, we have

(21) >0; Izl>R>l,

where p is the minimal real part of m in (13).
The validity of the relation (21) is sufficient to prove the

theorem. Let p be the minimum o the real part of m in (13).
We have, from (18) and Theorem 3 by the method similar to the
proof o Theorem 2,
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+ n
"+

2,Y (W,+(t)w.+(t)- W+(z)

(t)(t -z)’

N l-(qklogn+na)

where p and q are respectively the real and imaginal part of m
and B are equal respectively to B if p=, and B=O if

Now he relation (1) follows a once by Lemm . hus the
theorem has been established.


