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168. On the Strong Summability of the Derived Fourier Series

By Masakichi KINUKAWA
Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1954)

1. Let f(t) be a periodic function of bounded variation with
period 2w, and its Fourier series be
a,/2+ f‘. (@, cos nt+b, sin nt)= f‘:)An(t).
n=1 M=
We shall consider the derived Fourier series

i‘ n(b,, cos nt—a,, sin nt)= i ALt)
n=]1

n=1

and its conjugate series
g n(a,, cos nt +b, sin nt) =§; BJ(t).
We denote by 7,(t) and 7,(f) the nth partial sums of them, i.e.
() :T%]lm(bm cos mt— a,, sin mt) = mé_fl,’,,(t),

To(t)= i m{at,,, COS Mt + by, Sin ME)= ZWIBZ,,(t) .
m=1 m=
As in the case of Fourier series, we use the modified partial sums
of them;
@) =7 &) — ANO)[2, TEE)=n7()—B()/2.
Recently B.N. Prasad and U.N. Singh® proved the following
theorems:

Theorem A. If f(t) is a continuous function of bounded varia-
tion which is differentiable at t=x and if for some €>0

Gt)= j 1dg)] = oft(log 1)}, as t>0,
where g(w)=g,(u)=fx+u)—f@—u)—2uf'(x), then

31l ra(@)—f@) | =o(n).
That s, the derived Fourier series of f(t) ts (H, 1) summable to the
sum f'(x) at t=uw.

Theorem B. If f(t) is a continuous function of bounded wvaria-
tton which is differentiable at t=x and if for some >0

1) B. N. Prasad and U. N. Singh: Math. Zeits., 56, 280-288 (1952).
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H(t):fi dh(u)| :o{t(log %>—1—8}, as t—0,
where h(u)=h,(u) :f(;: +u)+ fle—u)—2f(x), then
3 17n(@)— Hol@) | =o0(n),
where H,(x)= — :11; !/; %m(t) cosec? %dt.

In this paper we shall prove the following (H, k) summability
theorems.

Theorem 1. Under the assumption of Theorem A,” we have

"‘an | k(@) —f (@) F=0(n), as n—>co,
Sor any k>0.
Theorem 2. Under the assumption of Theorem B, we have
mi; | 7% (x) — H (@) |F=0(n), as n—>oo,
Sor any k>0.
2. Proof of Theorem 1. We have

i@y [ e ama a2 7000
=5 ) f<x_t>(gttj:;j';) =1 - J s o) (LD )it

where D}(t)= - sin nt Integrating by parts, we get
2 tan t2°

H@ = [ Didifei—fa=t)= , J Drvine 7@

Thus we obtaln

HE-r@=_ [Ditdt=P,

say.
Hence, it is sufficient to show that

St=31| P, [*=0(n).

m=1
For this purpose we set c¢,=|P,* 'sgnP,, An(t):é ¢, 8in mt and
n m=1
I'n=Xenl. Then |A4,@)| =TI, and |4,0)| < ntl,. TUsing these
m=1
formulas, we have

2) In our theorems, the continuity of the function f(¢) in the whole interval is
not necessary.

3) Cf. G. H. Hardy and J. E. Littlewood: Proc. London Math. Soc., 26, 273-286
(1926-27).
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20 St = quZIP #1 P, sgnP,,,__Zm-Ecm

m=1

I

é ¢ f cot%sm mt dg(t) = f A, (t) cot _dg(t)

m=1

[ +f =1+,

n

I

say, where
L=< nrfldgt)l—om)
and

|Izigrnf”°cot-;-|dg(t>|

1/n

< Pn{[cot%G(t)T +% f "cosec2_;.G(t)dt}
"

1/n

_ " cosecr b At
= o(I',) +0(Fn ‘1{; €S = log L/6) m)

= o(I') +o(T, [ " tog ey =0T

803

Thus we get St=o(I",). However, by Hoélder’s inequality, we can

see,”

r,< (2 e lk)l/lc VEk__ Sk/lc’ 1% (1/k+1/k’ )

Hence we have St=o0(S/*n'*), that is, Si=o(n).

3. Proof of Theorem 2. As usual we put

D*()»«1 coi;;t then

Ti(@y=— 1 f f(u)( Drw—a))du

__1 f ( D*(t)){f(x+t)+f(x Hd

_%f D))= — (f +f) Ji+ T,

1/n
say, where

11 =0 [ Laviane=0(n [ 1an@)1)=ow)

4) We may suppose k>1.
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and

” t 1 - t
—dh(t) +— t-—-
cot 5 @ + 5 f cot —-cos nt dh(t)

e
1/n 1/n

1

™

£, 1% 1 ("1t
[cotih(t)l/n o) T htydt

1 r= 4
+ o f cot gcos nt dh(t)

1/n

1 . 1,/1
Lot (NN s T, = H,+T,.
o cot om h<n>+ + o(1)+ +T,

Thus we get
¥ —H,=T,+0(1).
Hence, it suffices to show that

Si= ST uP=o(n).

Similarly as 1 the proof of Theorem 1, we put ¢,=|T,|* 'sgn T,
A, )= G, cos mt and Iv=31¢xl. Then we have
m=1

m=1

S f "4, (t) cot -;—dk(t) <T, f "ot %]dh(t)l

1/n 1/n

2} =3 T dt 2l Ql/k
= an Fn ot A ['n — Sﬁ/k /&Y,
o) +of f/ blog 1jty) =0 TW =0

Thus we get Si=o(n), which is required.

4, Finally we shall state the following, which may be similar-
ly proved as Theorems 1 and 2.

Theorem 3. Under the assumption of Theorem A, we have
i’,ll-rm(x)—f’(x)l’EO(n), for any k£>0.
Theorem 4. Under the assumption of Theorem B, we have

gll 7m(@) — Hy(2) = O(n), for any &>0.



