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198. Some Properties of Hypernormal Spaces

By Kiyoshi ISEKI
Kobe University
(Comm. by K. KUNUGI, M.J.A., Dec. 13, 1954)

E. Hewitt (8) has defined a new class of abstract space called
hypernormal space. Further results on hypernormal spaces have been
obtained by M. Katétov (6). This note is concerned with a consid-
eration of hypernormal spaces.

All spaces considered are Hausdorff or 7, spaces.

Definition. A space S is called hypernormal, if, for any two
separated subsets 4, B of S, there are two open sets G, H such that
GDA, HOB and G ~ H=0.

We shall first prove the following

Theorem 1. For o Hausdorff space S, the following statements
are equivalent.

1) S s hypernormal,

2) If A and B are separated, there is a continuous function f on
S such that f(x)=0 for each x e A and f(x)=1 for each x ¢ B.

(8) If A is any subset of S, and f is a bounded continuous function
on A, f may be extended to continuous on S.

In the terminology of E. Cech (1) and E. Hewitt (4), the state-
ment (2) is that any two separated set A, B of S are always completely
separated.

The statement (8) is essentially due to M. Katétov (6).

Proof. (1)—>(2)

Let A, B be separated sets of S, then there are two open sets
G, H such that G DA, HD B and G ~ H=0. Since any hypernormal
space is normal, there is a continuous function f on S such that
Jf@x)=0 on G and f(x)=1 on H. Thus A4, B are completely separated.

(2) > (3)

We can suppose that f on A has the values in [—1,1]. Let
Jfo=f. We shall define inductively f, and .. We suppose that f,

are defined. Let
An:{w € S| fulm) = <_§_><£>”}

3
Bn:{x € S| ful@) = (%)(%)”}

then A,, B, are separated. The functions
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@)=L (2) Conra@), fur=tam 0

are continuous, where the functions C., s,(®) are continuous on S
such that Cu, »,(x)=0 for x ¢ A, and Cu,, s,(x)=1 for x ¢ B,. Such
functions exist by the hypothesis. From 0 << C4, z,(x) <1, we have

0< gul®) s% (gg) and 0= fo(@) < (;) (n=0,1,2, ...) for all z ¢ .

Clearly Zgon(x) is uniformly convergent on S. The limit o(x) is

contlnuous on S. Egpi(w) J@)— frii(@) on A implies p(x)=f(x) on A.
8)—~>) )
Let A, B be separated. Let f(x) be a function such that f(x)=0 on
A and f(x)=1 on B, then f(z) is continuous on A—B. From (3), f(x)

is extended a continuous function ¢(x) on S. Let G:{m eS| ¢(x)<%},
H= {x e Slop(x) > %}, then ACG, BC H and G ~ H=0. Therefore

Theorem 1 is completely proved.

Let B(S) be the Cech compactification of a completely regular
space S. Then we have the following

Theorem 2. A space S 1s hypernormal if and only if, for
separated sets A, B in S, the closures of A and B in the space B(S)
are disjoint.

Proof. If S is hypernormal, then any two separated subsets A4,
B are completely separated by Theorem 1 (2). Hence Cech theorem
implies A ~ B=0 in B(S). Conversely, for two separated subsets A

Bin S, let A~ B=0 in 8(S). Since 8(S) is normal Hausdorff space,
there is a continuous function f(x) such that f(x)=0 for ze¢ A and
J@)=1 for x ¢ B. Therefore the hypernormality of S follows directly
from Theorem 1 (2). This completes the proof.

Theorem 19 of E. Hewitt (4) and Theorem 1 (2) implies

Theorem 8. A space S is hypernormal if and only if any two
separated sets are contained in disjoint Z-sets in S.

For the definition of Z-set, see Definition 8 of E. Hewitt ((4), p. 53).

Now we shall consider the Hanner space of two hypernormal
spaces. Let X and Y be normal spaces, and B a closed subset of Y,
and f: B—>Y a continuous mapping. For the free union of X and
Y, we identify every point ye¢ B with f(y¥)eY. Then Z is the
identification space which is obtained from X, Y. A topology may
be defined on Z by the condition that a set O in Z is open if j77*(0)
and %£7'(0) are both open, where j is the projection from X to Z,
k from Y to Z. The topologized space Z is Hanner space of X and Y
by f. Such a space was considered by O. Hanner (2) K. Iséki (5).
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Theorem 4. The Hanner space Z of hypernormal spaces X and
Y by f is hypernormal.

The idea of the proof is essentially due to O. Hanner and the
present author ((2) and (5)).

Proof. Let A,, A, be separated sets in Z. Then A4, ~ X, 4, X
are separated in X. Thus there are closure disjoint open sets U,
U, of X such that U, D A, ~ X, U,DA,~X. X is closed in Z, and
U,, U, are separated in Z. This implies that B;=A, - U,, B;=A4,- U,
are separated in Z. Therefore k'(B,), k~'(B,) are separated in Y.
Since Y is hypernormal, there are closure disjoint open sets V,, V,
in Y such that V,DkYB,), V,D YB,). On the other hand,
k| Y—B is a homeomorphism between Y—B and Z—X. Therefore
G,=k(V,—B) - U,, G.=k(V;—B) — U, are closure disjoint. That the
two sets G,, G, are open is proved by a method similar to one
proving the previous theorem. (See for detail, O. Hanner (2) or K.
Iséki (5).) The proof is complete.

A hypernormal space X is called an AR (ANR) for the hyper-
normal class whenever a topological imbedding of X as a closed
subset X, of every hypernormal space Y is a retract (neighborhood)
of Y.

Then the following theorems are an easy consequence of Theorem
4 and their proofs are similar to the previous ones (K. Iséki (5), p.
145), therefore we shall omit the details.

Theorem 5. A hypernormal space X s an AR for hypernormal
class if and only if any continuous mapping f: B—>X of a closed
subset of a hypernormal space Y can be extended to Y.

Theorem 6. A hypernormal space X is an ANR for hypernormal
class if and only if, for any mapping f: B—>X of a closed subset
of a hypernormal space Y, there is an extension F: U—>X of f
to a neighborhood U of B in Y.
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