3. Notes on the Riemann-Sum

By Shigeru TAKAHASHI
Department of Mathematics, Kanazawa University, Japan
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1955)

§ 1. Let $\left\{t_{i}(w)\right\} i=1,2, \ldots$ be a sequence of independent random variables in a probability space (Ω, B, P) and each $t_{i}(w)$ has the uniform distribution in $[0,1]$, that is

$$
\begin{equation*}
F(x)=P\left(t_{i}(w)<x\right) \tag{1.1}
\end{equation*}
$$

which is 1 , x, or 0 according as $x>1,0 \leqq x \leqq 1$ or $x<0$. For each w, let $t_{i}^{(n)}(w)$ denote the i-th value of $\left\{t_{j}(w)\right\}$ ($1 \leqq j \leqq n$) arranged in the increasing order of magnitude and let

$$
(1.2) \quad t_{0}^{(n)}(w) \equiv 0, \quad t_{n+1}^{(n)}(w) \equiv 1, \quad(n=1,2, \ldots)
$$

Further let $f(t)(-\infty<t<+\infty)$ be a Borel-measurable function with period 1 and belong to $L_{1}(0,1)$.

Professor Kiyoshi Ito has recently proposed the problem: Does

$$
\begin{equation*}
S_{n}(w)=\sum_{i=1}^{n} f\left(t_{i}^{(n)}(w)\right)\left(t_{i}^{(n)}(w)-t_{i-1}^{(n)}(w)\right) \tag{1.3}
\end{equation*}
$$

converge to $\int_{0}^{1} f(t) d t$ in any sense?
In this note, we consider the following translated Riemann-sum

$$
\begin{equation*}
S_{n}(w, s)=\sum_{i=1}^{n} f\left(t_{i}^{(n}(w)+s\right)\left(t_{i}^{(n)}(w)-t_{i-1}^{(n)}(w)\right) \tag{1.4}
\end{equation*}
$$

and prove the following
Theorem 1. Let $f(t)$ be $L_{2}(0,1)$-integrable and for any $\varepsilon>0$,

$$
\begin{equation*}
\left(\int_{0}^{1}|f(t+h)-f(t)|^{2} d t\right)^{1 / 2}=O\left(1 /\left|\log \frac{1}{|h|}\right|^{1+\varepsilon}\right) \quad(|h| \rightarrow 0) \tag{1.5}
\end{equation*}
$$

Then for any fixed s, we have

$$
P\left(\lim _{n \rightarrow \infty} S_{n}(w, s)=\int_{0}^{1} f(t) d t\right)=1
$$

Remark. The w-set on which $S_{n}(w, s) \rightarrow \int_{0}^{1} f(t) d t$ depends on s.
Theorem 2. Let $f(t)$ be $L_{1}(0,1)$-integrable and for an $\varepsilon>0$,

$$
\begin{equation*}
\int_{0}^{1}|f(t+h)-f(t)| d t=O\left(1 /\left|\log \frac{1}{|h|}\right|^{1+\varepsilon}\right) \quad(|h| \rightarrow 0) \tag{1.6}
\end{equation*}
$$

Then for any fixed w, except a w-set of probability zero, there exists a set $M_{w} \subset[0,1]$ with measure 1 such that

$$
\lim _{n \rightarrow \infty} S_{n}(w, s)=\int_{0}^{1} f(t) d t \quad\left(s \in M_{w}\right)
$$

§ 2. By (1.1) and the independency of $\left\{t_{i}(w)\right\}$, it may be seen that

$$
\begin{equation*}
P\left(\bigcup_{m \neq n}\left(t_{m}=t_{n}\right)\right)=0 . \tag{2.1}
\end{equation*}
$$

On the other hand, we have

$$
P\left(t_{n}(w)=t_{n}^{(n)}(w)\right)=P\left(\quad\left[t_{v_{1}}<t_{v_{2}}<\cdots<t_{v_{n-1}}<t_{n}\right]\right),
$$

where \sim denotes the summation over all permutations of (v_{1}, v_{2}, $\left.\ldots v_{n-1}\right)$ and v_{i} denotes an integer between 1 and ($n-1$) such that $v_{i} \neq v_{j}$ if $i \neq j$.

For different permutations of ($v_{1}, v_{2}, \ldots v_{n-1}$) the corresponding sets $\left[t_{v_{1}}<t_{v_{2}}<\cdots<t_{v_{n-1}}<t_{n}\right]$ are disjoint with each other and by the definitions of $\left\{t_{i}(w)\right\}$ ($1 \leqq i$), we have for any permutation of (v_{1}, v_{2}, $\ldots v_{n-1}$)

$$
P\left(t_{v_{1}}<t_{v_{2}}<\cdots<t_{v_{n-1}}<t_{n}\right)=\int_{0}^{1} d x_{n} \int_{0}^{x_{n}} d x_{n-1} \int_{0}^{x_{n-1}} d x_{n-2} \cdots \int_{0}^{x_{2}} d x_{1}=\frac{1}{n!} .
$$

Therefore we obtain

$$
\begin{equation*}
P\left(t_{n}(w)=t_{n}^{\left(n_{n}\right)}(w)\right)=1 / n . \tag{2.2}
\end{equation*}
$$

Let us put, for $i \leqq n$,

$$
\begin{equation*}
d_{i, n}(w)=t_{j+1}^{(n)}(w)-t_{i}(w), \quad \text { if } t_{i}(w)=t_{j}^{(x)}(w) \quad(j=1,2, \ldots n) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{i, n}^{\prime},(w)=t_{i}(w)-t_{j=1}^{(n)}(w), \quad \text { if } t_{i}(w)=t_{j}^{(n)}(w) \quad(j=1,2, \ldots n) . \tag{2.3'}
\end{equation*}
$$

Then we can write

$$
\begin{equation*}
S_{n}(w, s)=\sum_{i=1}^{n} f\left(t_{i}(w)+s\right) d_{i, n}^{\prime}(w) . \tag{2.4}
\end{equation*}
$$

Lemma 1. We have, for $0 \leqq h \leqq 1$,

$$
P\left(d_{i, n}(w)<h\right)=P\left(\overline{d_{i, n}^{\prime}}(w)<h\right)=1-(1-h)^{n} .
$$

Proof. By the definition of $d_{i, n}(w)$, we have

$$
\begin{aligned}
P\left(d_{i, n}(w)<h\right) & =P\left(\left[d_{i, n}(w)<h\right] \cap\left[t_{i}(w) \leqq 1-h\right]\right)+P\left(t_{i}(w)>1-h\right) \\
& =\int_{n}^{1-h} P\left(d_{i, n}(w)<h \mid t_{i}(w)=x\right) d F(x)+h,
\end{aligned}
$$

where $P(E \mid F)$ denotes the conditional probability of E under the hypothesis F. From the independency of $\left\{t_{i}(w)\right\}$, it follows that

$$
\begin{aligned}
P\left(d_{i, n}(w)<h \mid t_{i}(w)=x\right) & =P\left(\bigcup_{\substack{j=1 \\
j \neq i}}^{n}\left(x \leqq t_{j}(w)<x+h\right) \mid t_{i}(w)=x\right) \\
& =P\left(\bigcup_{\substack{j=i \\
j i t}}^{n}\left(x \leqq t_{j}(w)<x+h\right)\right) \\
& =1-\prod_{\substack{j=1 \\
j \neq i}}\left(1-P\left(x \leqq t_{j}(w)<x+h\right)\right)=1-(1-h)^{n-1} .
\end{aligned}
$$

Hence, we have

$$
P\left(d_{i, n}(w)<h\right)=\int_{0}^{1-n}\left\{1-(1-h)^{n-1}\right\} d F(x)+h=1-(1-h)^{n} .
$$

By the same way, we can show the second relation.
From the above lemma, it may be seen that

$$
\begin{align*}
P\left(\operatorname{Max}_{1 \leq \Delta \leq n} d_{i, n}(w)\right. & \geqq 4 \log n / n) \leqq \sum_{i=1}^{n} P\left(d_{i, n}(w) \geqq 4 \log n / n\right) \tag{2.5}\\
& =n(1-4 \log n / n)^{n}=O\left(1 / n^{3}\right) \quad(n \rightarrow+\infty)
\end{align*}
$$

and

$$
P\left(\underset{1 \leq i \leq \leq n}{\operatorname{Max}} d^{\prime}{ }_{i, n}(w) \geqq 4 \log n / n\right)=O\left(1 / n^{3}\right) \quad(n \rightarrow+\infty) .
$$

By an easy estimation, it may be seen that

$$
\begin{equation*}
\int_{\Omega} d_{i, n}^{\prime}(w) d P=O(1 / n), \quad \int_{\Omega}\left(d_{i, n}^{\prime}(w)\right)^{2} d P=O\left(1 / n^{2}\right) \quad(n \rightarrow+\infty) . \tag{2.6}
\end{equation*}
$$

Lemma 2. For every positive numbers x and y such that $x+y<1$, we have

$$
P\left(\left[t_{n}(w)<x\right] \cap\left[d_{n, n}(w)<y\right]\right)=x\left\{1-(1-y)^{n-1}\right\} .
$$

Proof. We have, by the same way as the proof of Lemma 1

$$
\begin{aligned}
P\left(\left[t_{n}(w)<x\right]\right. & \left.\cap\left[d_{n, n}(w)<y\right]\right)=\int_{0}^{x} P\left(\left[d_{n, n}(w)<y\right] \mid\left[t_{n}(w)=z\right]\right) d F(z) \\
& =\int_{0}^{x} P\left(\bigcup_{i=1}^{n-1}\left(z \leqq t_{i}(w)<z+y\right) \mid t_{n}(w)=z\right) d F(z) \\
& =\int_{0}^{x} P\left(\bigcup_{i=1}^{n-1}\left(z \leqq t_{i}(w)<z+y\right)\right) d F(z) \\
& =\int_{0}^{x}\left\{1-(1-y)^{n-1}\right\} d F(z)=x\left\{1-(1-y)^{n-1}\right\} .
\end{aligned}
$$

The following lemma is well known.
Lemma 3. Let $\left\{r_{i, n}\right\}$ be sequences of real numbers such that

$$
0=r_{0, n}<r_{1, n}<r_{2, n}<\cdots<r_{n, n}<r_{n+1, n}=1 \quad(n=1,2, \ldots)
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{Max}_{0 \leq i \leq n}\left(r_{i+1, n}-r_{i, n}\right)=0
$$

Then, if $g(t)$ is $L_{1}(0,1)$-integrable and periodic with period 1, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\sum_{i=1}^{n} g\left(r_{i, n}+s\right)\left(r_{i+1, n}-r_{i, n}\right)-\int_{0}^{1} g(t) d t\right| d s=0 .
$$

§ 3. Proof of Theorem 1. From (2.4), we obtain

$$
\begin{equation*}
S_{n}(w, s)-S_{n-1}(w, s)=d_{n, n}^{\prime}(w)\left\{f\left(t_{n}(w)+s\right)-g_{n}(w, s)\right\} \tag{3.1}
\end{equation*}
$$

where

$$
g_{n}(w, s)= \begin{cases}0, & \text { if } t_{n}(w)=t_{n}^{(n)}(w) \tag{3.2}\\ f\left(t_{n}(w)+d_{n, n}(w)+s\right), & \text { if } t_{n}(w) \neq t_{n}^{n}(w) .\end{cases}
$$

Since $t_{n}(w)+d_{n, n}(w) \leqq 1$, we have

$$
\begin{aligned}
& \quad \int_{\Omega}\left|S_{n}(w, s)-S_{n-1}(w, s)\right| d P \\
& =\int_{E_{1}, n} d_{n, n}^{\prime}(w)\left|f\left(t_{n}(w)+s\right)\right| d P+\int_{E_{2}} d_{n, n}^{\prime}(w) \mid f\left(t_{n}(w)+s\right)-f\left(t_{n}(w)\right. \\
& \left.\quad+d_{n, n}(w)+s\right)\left|d P+\int_{E_{3}} d_{n, n}^{\prime}(w)\right| f\left(t_{n}(w)+s\right)-f\left(t_{n}(w)+d_{n, n}(w)+s\right) \mid d P \\
& =I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where

$$
E_{1}=\left[t_{n}(w)=t_{n}^{(n)}(w)\right],
$$

$$
\left.E_{2}=\left[t_{n}(w) \neq t_{n}^{(n)}(w)\right) \cap\left(t_{n}(w)+d_{n, n}(w)=1\right)\right],
$$

and

$$
\left.E_{3}=\left[t_{n}(w) \neq t_{n}^{(n)}(w)\right) \cap\left(t_{n}(w)+d_{n, n}(w)<1\right)\right] .
$$

Let us put $\quad E_{4}=\left[d_{n, n}^{\prime}(w) \geqq 4 \log n / n\right]$.
By (2.2) and (2.5'), we have

$$
\begin{aligned}
I_{1} & \leqq\left(\int_{E_{1} \cap E_{4}}\left(d_{n, n}^{\prime}\right)^{2} d P\right)^{1 / 2}\left(\int_{E_{1} \cap E_{4}}\left|f\left(t_{n}(w)+s\right)\right|^{2} d P\right)^{1 / 2} \\
& +\left(\int_{\left.E_{1} \cap \Omega-E_{4}\right)}\left(d_{n, n}^{\prime}\right)^{2} d P\right)^{1 / 2}\left(\int_{\substack{E_{n} \cap(\Omega)}}\left|f\left(t_{n}(w)+s\right)\right|^{2} d P\right)^{1 / 2} \\
& =O\left(P^{1 / 2}\left(E_{4}\right)\right)+O\left(\log n / n P^{1 / 2}\left(E_{1}\right)\right)=O\left(\log n / n^{3 / 2}\right) \quad(n \rightarrow+\infty) .
\end{aligned}
$$

By (1.1) and the definition of $d_{n, n}(w)$, we obtain

$$
P\left(E_{2}\right) \leqq P\left(\bigcup_{j=1}^{n-1}\left(t_{j}(w)=1\right)\right)=0
$$

Therefore $I_{2}=0$. By (2.6), we have

$$
\begin{aligned}
I_{3} & \equiv\left(\int_{E_{3}}\left(d_{n, n}^{\prime}\right)^{2} d P\right)^{1 / 2}\left(\int_{E_{3}}\left|f\left(t_{n}(w)+d_{n, n}(w)+s\right)-f\left(t_{n}(w)+s\right)\right|^{2} d P\right)^{1 / 2} \\
& =O(1 / n)\left(\int_{E_{3}}\left|f\left(t_{n}(w)+d_{n, n}(w)+s\right)-f\left(t_{n}(w)+s\right)\right|^{2} d P\right)^{1 / 2} \equiv O(1 / n) \cdot I_{3}^{\prime}
\end{aligned}
$$

say. From Lemma 2 and the definition of E_{3}, it is easily seen that

$$
I_{s}^{\prime}=\left\{\int_{D} \int|f(x+y+s)-f(x+s)|^{2}(n-1)(1-y)^{n-2} d x d y\right\}^{1 / 2}
$$

where D denotes the domain $(0 \leqq x<1, x+y<1$ and $0 \leqq y)$. Hence we have, by (1.5),

$$
\begin{aligned}
I_{3}^{\prime}= & \left\{\int_{0}^{1}(n-1)(1-y)^{n-2} d y \int_{0}^{1-y}|f(x+y+s)-f(x+s)|^{2} d x\right\}^{1 / 2} \\
= & \left\{\int_{0}^{\log (n-1) /(n-1)}(n-1)(1-y)^{n-2} d y \int_{0}^{1-y}|f(x+y+s)-f(x+s)|^{2} d x\right. \\
& \left.+\int_{\log (n-1) / n-1}^{1}(n-1)(1-y)^{n-2} d y \int_{0}^{1-y}|f(x+y+s)-f(x+s)|^{2} d x\right\}^{1 / 2} \\
=O & \left\{\frac{1-[1-\log (n-1) /(n-1)]^{n-1}}{(\log n)^{2+2 \varepsilon}}+\left(1-\frac{\log (n-1)}{n-1}\right)^{n-1}\right\}^{1 / 2}=O\left(1 /(\log n)^{1+\varepsilon}\right) .
\end{aligned}
$$

Therefore,

$$
\sum_{n} \int_{\Omega}\left|S_{n}(w, s)-S_{n-1}(w, s)\right| d P<+\infty .
$$

This proves that, for any fixed s,

$$
\begin{equation*}
P\left(S_{n}(w, s) \quad \text { converges }\right)=1 \tag{3.3}
\end{equation*}
$$

Hence, for the Proof of Theorem 1, it is sufficient to show that

$$
\begin{equation*}
M_{n}=\int_{\Omega}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d P=o(1) \quad(n \rightarrow+\infty) \tag{3.4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
S_{n}(w, s)-\int_{0}^{1} f(t) d t=\sum_{i=1}^{n} \int_{0}^{a_{i}^{\prime}, n^{(w)}}\left\{f\left(t_{i}(w)+s\right)-f\left(t_{i}(w)+s-u\right)\right\} d u \tag{3.5}
\end{equation*}
$$

$$
+\int_{0}^{1-t_{n^{(w)}}^{(n)}} f\left(t_{n}^{t^{\prime} \backslash}(w)+s+u\right) d u
$$

Let us put

$$
E=\left[\operatorname{Max}_{1 \leq i \leq n} d_{i, n}^{\prime}(w) \geqq 4 \log n / n\right] .
$$

Then by (2.5'), it may be seen that

$$
\begin{align*}
& \int_{E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d P \tag{3.6}\\
& \quad \leqq \sum_{i=1}^{n} \int_{E}\left|f\left(t_{i}(w)+s\right)\right| d P+\int_{E} d P\left|\int_{0}^{1} f(t) d t\right| \\
& \quad \leqq \sum_{i=1}^{n} P^{1 / 2}(E)\left(\int_{0}^{1}\left|f\left(t_{i}(w)+s\right)\right|^{2} d P\right)^{1 / 2}+P(E)\left|\int_{0}^{1} f(t) d t\right|=O\left(1 / n^{1 / 2}\right)
\end{align*}
$$

and by (3.5)

$$
\begin{align*}
& \text { 3.7) } \quad V_{n}=\int_{\Omega-E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right|^{2} d P \tag{3.7}\\
& \leqq\left(\sum_{i=1}^{n} \int_{\Omega-E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d P \int_{0}^{a_{i}^{\prime}, n^{(w)}}\left|f\left(t_{i}(w)+s\right)-f\left(t_{i}(w)+s-u\right)\right| d u\right. \\
& + \\
& \left.\equiv \int_{\Omega-E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d P \int_{0}^{1-t_{n}^{(n)}(w)}\left|f\left(t_{n}^{n)}(w)+u+s\right)\right| d u\right) \\
& \equiv \sum_{i=1}^{n} V_{i, n}+V_{n}^{\prime}
\end{align*}
$$

say. By (1.5) we have
(3.8) $\quad V_{i, n} \leqq \int_{\Omega-E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d P \int_{0}^{4 \log n / n}\left|f\left(t_{i}(w)+s\right)-f\left(t_{i}(w)+s-u\right)\right| d u$

$$
\begin{aligned}
& =\int_{0}^{4 \log n / n} d u \int_{\Omega-E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right|\left|f\left(t_{i}(w)+s\right)-f\left(t_{i}(w)+s-u\right)\right| d P \\
& \leqq \int_{0}^{4 \log n / n} d u\left(\int_{\Omega-E}\left|f\left(t_{i}(w)+s\right)-f\left(t_{i}(w)+s-u\right)\right|^{2} d P\right)^{1 / 2} V_{n}^{1 / 2} \\
& =O\left(V_{n}^{1 / 2} / n(\log n)^{\varepsilon}\right) .
\end{aligned}
$$

By the definitions of $t_{n}^{(n)}(w)$ and $d_{i, n}(w)$, it is seen that

$$
\begin{align*}
& \begin{aligned}
V_{n}^{\prime} & =O\left(\int_{\Omega-E}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right|\left|1-t_{n}^{(n)}(w)\right|^{1 / 2} d P\right) \\
& =O\left[V_{n}\left(\int_{\Omega-E}\left|1-t_{n}^{(n)}(w)\right| d P\right)\right]^{1 / 2} \\
= & O\left(V_{n}\left(\int_{1-t_{n}^{(n)} \geq 4 \log n / n}\left(1-t_{n}^{(n)}\right) d P+\int_{1-t_{n}^{(n)}<4 \log n / n}\left(1-t_{n}^{(n)}\right) d P\right)\right)^{1 / 2}=O\left(\frac{V_{n}^{1 / 2}(\log n)^{1 / 2}}{n^{1 / 2}}\right)
\end{aligned} . \tag{3.9}
\end{align*}
$$

By (3.7), (3.8) and (3.9), we get
(3.10)
$V_{n}^{1 / 2}=O\left(1 /(\log n)^{\varepsilon}\right)$
$(n \rightarrow+\infty)$.

By (3.6), (3.7) and (3.10), it follows that

$$
\int_{\Omega}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d P=O\left(n^{-1 / 2}\right)+O\left(1 /(\log n)^{\varepsilon}\right)=o(1) \quad(n \rightarrow+\infty)
$$

§4. Proof of Theorem 2. From (3.1) and (3.2), we have

$$
\begin{aligned}
& \int_{\Omega} d P \int_{0}^{1}\left|S_{n}(w, s)-S_{n-1}(w, s)\right| d s \\
& \quad=\int_{\substack{t_{n}^{(n)} \neq t_{n}}}^{0} d_{n, n}^{\prime} d P \int_{0}^{1}\left|f\left(t_{n}(w)+s\right)-f\left(t_{n}(w)+d_{n, n}(w)+s\right)\right| d s
\end{aligned}
$$

$$
+\int_{\substack{\left(t_{n}^{(n)}=\delta_{n}^{(n)}\right.}} d_{n, n}^{\prime} d P \int_{0}^{1}\left|f\left(t_{n}(w)+s\right)\right| d s \equiv J_{1}+J_{2} \equiv J_{1}^{\prime}+J_{1}^{\prime \prime}+J_{2} .
$$

Let us put
$F_{1}=\left[t_{n}(w) \neq t_{n}^{(n)}(w)\right], F_{2}=\left[d_{n, n}(w) \geqq 4 \log n / n\right], F_{3}=\left[d_{n, n}^{\prime}(w) \geqq 4 \log n / n\right]$. Then we have, by (1.6), (2.5) and (2.6),

$$
\begin{aligned}
J_{1}^{\prime} & =\int_{P_{1} \cap p_{n}, n} d_{n}^{\prime} d P \int_{0}^{1}\left|f\left(t_{n}(w)+s\right)-f\left(t_{n}(w)+d_{n, n}(w)+s\right)\right| d s \\
& \leqq\left(2 \int_{0}^{1}|f(t)| d t\right) P\left(F_{2}\right)=O\left(1 / n^{3}\right) \quad(n \rightarrow+\infty)
\end{aligned}
$$

and

$$
\begin{aligned}
J_{1}^{\prime \prime} & =\int_{\left.F_{1} \cap(\Omega)-F_{2}\right)} d_{n_{n}}^{\prime} d P \int_{0}^{1} \mid f\left(t_{n}(w)+s\right)-f\left(t_{n}(w)+d_{n, n}(w)+s \mid d s\right. \\
& =\left(\int_{P_{1} \cap\left(\Omega-F_{n}\right)}^{d_{n, n}^{\prime}} d P\right) O\left(1 /(\log n)^{1+\varepsilon}\right) \\
& =O\left(\frac{1}{(\log n)^{1+\varepsilon}} \int_{\Omega} d_{n, n}^{\prime} d P\right)=O\left(1 / n(\log n)^{1+\varepsilon}\right) \quad(n \rightarrow+\infty) .
\end{aligned}
$$

Also by (2.2) and (2.5'),

$$
\begin{aligned}
J_{2} & =\int_{\Omega-p_{1}} d_{n, n}^{\prime} d P \int_{0}^{1}\left|f\left(t_{n}(w)+s\right)-f\left(t_{n}(w)+d_{n, n}(w)+s\right)\right| d s \\
& \leqq\left(2 \int_{0}^{1}|f(t)| d t\right)\left(\int_{P_{3} \cap\left(\Omega-P_{n, n}^{1}\right.} d_{n}^{\prime} d P+\int_{\left(\Omega-P_{3}\right) \cap\left(\Omega-F_{1}\right)} d_{n}^{\prime} d P\right) \\
& =O\left(\frac{1}{n^{3}}+\frac{4 \log n}{n} P\left(\Omega-F_{1}\right)\right)=O\left(\log n / n^{2}\right) \quad(n \rightarrow+\infty) .
\end{aligned}
$$

Therefore, it follows that

$$
\sum_{n} \int_{\Omega} d P \int_{0}^{1}\left|S_{n}(w, s)-S_{n-1}(w, s)\right| d s<+\infty
$$

and this results for any fixed w, except a w-set of probability zero,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}(w, s)=S(w, s) \tag{4.1}
\end{equation*}
$$

exists for almost all s, but the s-set depends on w.
On the other hand, by (2.5) and (2.5'), we have

$$
P\left(\left[\lim _{n \rightarrow \infty} \operatorname{Max} \operatorname{Max}_{1 \leq i \leq n} d_{i, n}(w)=0\right] \cap\left[\lim _{n \rightarrow \infty} \operatorname{Max}_{1 \leq i \leq n} d_{i, n}^{\prime}(w)=0\right]\right)=1
$$

and hence, by Lemma 3, it is seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|S_{n}(w, s)-\int_{0}^{1} f(t) d t\right| d s=0 \tag{4.2}
\end{equation*}
$$

holds for any fixed w except a w-set of probability zero. Using the Fatou's Lemma, we obtain, from (4.1) and (4.2),

$$
\begin{equation*}
\int_{0}^{1}\left|S(w, s)-\int_{0}^{1} f(t) d t\right| d s=0 \tag{4.3}
\end{equation*}
$$

which proves the theorem.

