11. On the Integro-jump of a Function and Its Fourier Coefficients

By Masakiti Kinukawa
Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. Suetuna, m.J.A., Feb. 18, 1955)

1. Introduction. Suppose that $f(x)$ is periodic with period 2π and Lebesgue integrable in $(-\pi, \pi)$. Let the Fourier series of $f(x)$ be

$$
f(x) \sim a_{0} / 2+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

and let

$$
\bar{s}_{n}(x)=\sum_{\nu=1}^{n}\left(b_{\nu} \cos \nu x-a_{\nu} \sin \nu x\right) \equiv \sum_{\nu=1}^{n} B_{\nu}(x)
$$

We denote by $\bar{\sigma}_{n}^{\alpha}(x)$ the n-th Cesàro mean of order α of the sequence $\left\{\bar{s}_{n}(x)\right\}$.
H. C. Chow showed the following

Theorem A. ${ }^{1)}$ If there exists a number $L(x)$ such that

$$
\begin{equation*}
\int_{0}^{t} \psi(u) d u=o(t), \quad \int_{0}^{t}|\psi(u)| d u=O(t), \text { as } t \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $\psi(t)=f(x+t)-f(x-t)-L(x)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\bar{\sigma}_{2 n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)\right]=\frac{1}{\pi} \log 2 \cdot L(x), \text { for } \alpha>0 \tag{1.2}
\end{equation*}
$$

F. C. Hsiang proved also the following

Theorem B. ${ }^{2)}$ If the integral

$$
\begin{equation*}
\int_{0}^{t} \frac{\psi(u)}{u^{1 / a}} d u(1>a>0) \tag{1.3}
\end{equation*}
$$

exists, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\bar{\sigma}_{2 n}^{1}(x)-\bar{\sigma}_{n}^{1}(x)\right]=\frac{1}{\pi} \log 2 \cdot L(x) \tag{1.4}
\end{equation*}
$$

Concerning the sequence $\left\{n B_{n}(x)\right\}$, O. Szász ${ }^{3)}$ proved the following
Theorem C. Under the assumption of Theorem A, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n B_{n}(x)=-\frac{1}{\pi} L(x)(C, 2) \tag{1.5}
\end{equation*}
$$

Recently Kenzi Yano ${ }^{4)}$ showed that Theorem C is still valid even if ($C, 2$) is replaced by ($C, 1+\alpha$), for every $\alpha>0$.

It will not be of no interest to replace the conditions of Theorem

[^0]A by that depending on the number α. In fact, we get the following

Theorem 1. If $0<\alpha<1$ and

$$
\begin{equation*}
\int_{0}^{t} \psi(u) d u=o\left(t^{1 / \alpha}\right), \text { as } t \rightarrow 0, \tag{1.6}
\end{equation*}
$$

then the relation (1.2) holds.
The condition (1.6) is more general than (1.3) in Theorem B.
Theorem 1 may be generalized in the following form:
Theorem 2. If $0<\beta<\gamma, \alpha=\beta /(\gamma-\beta+1), 0<\alpha<2$
and

$$
\psi_{\beta}(t) \equiv \frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-u)^{\beta-1} \psi(u) d u=o\left(t^{r}\right), \text { as } t \rightarrow 0,
$$

then the relation (1.2) holds.
Concerning the summability of the sequence $\left\{n B_{n}(x)\right\}$, we get similar theorems:

Theorem 3. Under the assumption of Theorem 1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n B_{n}(x)=-\frac{1}{\pi} L(x) \quad(C, 1+\alpha) . \tag{1.7}
\end{equation*}
$$

Theorem 4. Under the assumption of Theorem 2, we have the relation (1.7).
2. For the proof of above theorems, we need the following lemmas.

Lemma 1.5) If $a>-1$ and $\bar{\gamma}_{n}^{\alpha}(x)$ denotes the n-th Cesàro mean of order α of the sequence $\left\{n B_{n}(x)\right\}$, then

$$
\begin{gathered}
\bar{\tau}_{n}^{\alpha}(x)=n\left\{\bar{\sigma}_{n}^{\alpha}(x)-\bar{\sigma}_{n-1}^{\alpha}(x)\right\} . \\
\bar{\tau}_{n}^{x+1}(x)=(\alpha+1)\left\{\bar{\sigma}_{n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha+1}(x)\right\} .
\end{gathered}
$$

Lemma 2. ${ }^{6)}$ If $g_{n}^{x}(t)$ denotes the n-th Cesàro mean of order α of the sequence $\left\{g_{n}(t)\right\}$, where $g_{n}(t)=\cos n t(n \geqq 1)$ and $g_{0}(t)=1 / 2$, then we have

$$
\left|\left(\frac{d}{d t}\right)^{k} g_{n}^{\alpha}(t)\right| \begin{cases}\leqq A n^{k} & (k \geqq 0), \\ \leqq n^{-2} t^{-k-2} & (k \leqq \alpha-2), \\ \leqq A n^{k-\alpha} t^{-\alpha} & (k>\alpha-2),\end{cases}
$$

for $\alpha>0,0<t<\pi$ and $k=0,1,2, \ldots$.
Lemma 3. ${ }^{\eta)}$ If $h_{n}^{\alpha}(t)=\sum_{\nu=n+1}^{\sum_{n},} g_{v}^{u}(t) / \nu$, then

$$
\left\lvert\,\left(\frac{d}{d t}\right)^{k} h_{n}^{\alpha}(t) \begin{cases}\leqq A n^{k} & (k \geqq 0), \\ \leqq A n^{-2} t^{-k-2} & (k \leqq \alpha-1), \\ \leqq A n^{k-\alpha-1}, t^{-\alpha-1} & (k>\alpha-1),\end{cases}\right.
$$

for $\alpha>0,0<t<\pi$ and $k=1,2, \ldots$.
We shall prove Theorem 1. After H. C. Chow, we write
5) E. Kogbetliantz: Mémorial des Sciences Math., 5, 23-30 (1931) (cf. Chow: loc. cit.).
6) Cf. Chow: Loc. cit. and A. Zygumund: Trigonometrical series, 258-259 (1935).
7) Cf. Chow: Loc. cit.

$$
\begin{aligned}
n B_{n}(x) & =\frac{n}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \sin n t d t \\
& =-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} \cos n t d t
\end{aligned}
$$

then

$$
\begin{equation*}
\bar{\tau}_{n}^{\alpha}(x)=-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} g_{n}^{\alpha}(t) d t \tag{2.1}
\end{equation*}
$$

and hence, by Lemma 1,

$$
\begin{equation*}
\bar{\sigma}_{2 n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)=-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} h_{n}^{\alpha}(t) d t \tag{2.2}
\end{equation*}
$$

If we put $\Omega_{n}=-\frac{1}{\pi} \int_{0}^{\pi} \frac{d}{d t} h_{n}^{a}(t) d t$, then

$$
-\pi\left[\bar{\sigma}_{2 n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)-\Omega_{n} L(x)\right]=\int_{0}^{\pi} \psi(t) \frac{d}{d t} h_{n}^{\alpha}(t) d t=I,
$$

say. Since the sequence $\left\{(-1)^{n}-1\right\}$ is summable (C, α) to -1 for every $\alpha>0$, it follows that $\Omega_{n}=\frac{1}{\pi} \log 2+o(1)$, as $n \rightarrow \infty$. Therefore it is sufficient to show that $I=o(1)$ as $n \rightarrow \infty$. We devide the integral I into two parts such that

$$
I=\int_{0}^{k / n^{\alpha} /(1+\alpha)}+\int_{k / n^{\alpha} /(1+\alpha)}^{\pi}=I_{1}+I_{2}
$$

where, by Lemma 3,

$$
\left|I_{2}\right| \leqq \frac{A}{n^{\alpha}} \int_{k / n^{\alpha} /(1+\alpha)}^{\pi}|\psi(t)| t^{-\alpha-1} d t \leqq \frac{A}{n^{\alpha}} \frac{n^{\alpha}}{k^{1+\alpha}} \int_{0}^{\pi}|\psi(t)| d t \leqq A k^{-1-\alpha}
$$

On the other hand, we get, by integration by parts,

$$
I_{1}=\left[\psi_{1}(t) \frac{d}{d t} h_{n}^{\alpha}(t)\right]_{0}^{k / n^{\alpha} /(1+\alpha)}-\int_{0}^{k / n^{\alpha} /(1+\alpha)} \psi_{1}(t)\left(\frac{d}{d t}\right)^{2} h_{n}^{\alpha}(t) d t
$$

When k is fixed,

$$
\begin{aligned}
& I_{1}= {\left[\psi_{1}(t) \frac{d}{d t} h_{n}^{\alpha}(t)\right]_{0}^{1 / n}+\left[\psi_{1}(t) \frac{d}{d t} h_{n}^{\alpha}(t)\right]_{1 / n}^{k / n \alpha /(1+\alpha)} } \\
&-\left\{\int_{0}^{1 / n}+\int_{1 / n}^{k / n / n /(1+\alpha)}\right\} \psi_{1}(t)\left(\frac{d}{d t}\right)^{2} h_{n}^{\alpha}(t) d t \\
&= o\left(n\left[t^{1 / \alpha}\right]_{0}^{1 / n}\right)+o\left(\frac{1}{n^{\alpha}}\left[t^{1 / \alpha-\alpha-1}\right]_{1 / n}^{k / n /(1+\alpha)}\right) \\
&+o\left(n^{2} \int_{0}^{1 / n} t^{1 / \alpha} d t\right)+o\left(n^{1-\alpha} \int_{1 / n}^{k / n / n^{\alpha /(1+\alpha)}} t^{1 / \alpha-\alpha-1} d t\right) \\
&=o(1)+o\left(1 / n^{1 / \alpha-1}\right)+o\left(k^{1 / \alpha-\alpha-1} / n^{1 /(1+\alpha)}\right)+o\left(1 / n^{1 / \alpha-1}\right) \\
& \quad o\left(1 / n^{1 / \alpha-1}\right)+o\left(k^{1 / \alpha-\alpha} / n^{\alpha-1+\frac{1-\alpha)}{\alpha}} \frac{\alpha}{1+\alpha}\right) \\
&=o(1)
\end{aligned}
$$

as $n \rightarrow \infty$. Hence we have

$$
\varlimsup_{n \rightarrow \infty} \pi\left|\bar{\sigma}_{2 n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)-\Omega_{n} L(x)\right| \leqq A k^{-1-\alpha} .
$$

Letting $k \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty}\left[\bar{\sigma}_{2 n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)\right]=\frac{\log 2}{\pi} L(x)
$$

which is the required.
As we may see by Lemma 3, the order of the kernel $\frac{d}{d t} h_{n}^{\alpha}(t)$ equals to the order of the Fejér kernel, and the proof of Theorem 2 is reduced to prove $I=o(1)$, as in Theorem 1. While the estimation of I is similar as in the proof of the Izumi and Sunouchi theorem concerning the (C, α) summability of Fourier series. ${ }^{8)}$ Hence we omit the detail, concerning the proof of Theorem 2.

Instead of Lemma 3 and (2.2) if we use Lemma 2 and (2.1), then we can prove Theorems 3 and 4 similarly as Theorems 1 and 2.

We end this paper by a remark: S. Izumi ${ }^{9}$ showed that for the case $\alpha=1$ in Theorem A, the second condition of (1.1) can be replaced by the following Lebesgue type condition:

$$
\int_{t}^{\pi} \frac{|\psi(t+u)-\psi(u)|}{u} d u=O(1), \text { as } t \rightarrow 0
$$

However this fact holds not only for the case $\alpha=1$, but also for the case $\alpha>0$, which is obvious from K. Yano's argument. ${ }^{10)}$

Added in Proof. We get the following ${ }^{11)}$
Corollary. If the integral

$$
\tilde{f}(x)=-\frac{1}{2 \pi} \int_{\rightarrow 0}^{\pi} \theta(t) \cot \frac{t}{2} d t
$$

exists as a "Cauchy integral" at the origin, where $\theta(t)=f(x+t)-f(x-t)$, then one of the following conditions is sufficient for the $(C, \alpha)(\alpha>0)$ summability of the conjugate Fourier series of $f(x)$;

$$
\begin{array}{cc}
1^{\circ} . & \int_{0}^{t} \theta(u) d u=o(t)(t \rightarrow 0) \text { and } \int_{0}^{t}|\theta(u)| d u=O(t), \\
2^{\circ} . & \int_{0}^{t} \theta(u) d u=o\left(t^{1 / \alpha}\right), \quad(0<\alpha<1) \\
3^{\circ} . & \theta_{\beta}(t) \equiv \frac{1}{\Gamma(\beta)} \int_{0}^{t} \theta(u)(t-u)^{\beta-1} d u=o\left(t^{\tau}\right)(t \rightarrow 0), \\
(0<\beta<\gamma, \alpha=\beta /(\gamma-\beta+1), 0<\alpha<1) .
\end{array}
$$

This is the analogue of the Cesàro summability theorem of Fourier series. ${ }^{12)}$

Proof is easy from Theorems C, 3, 4 and the following result due to Hardy-Littlewood. ${ }^{13)}$

Lemma 4. If $\sum u_{n}$ is summable (A), then a necessary and sufficient condition that it should be summable (C, α), $\alpha>-1$, is that the sequence $\left\{n u_{n}\right\}$ is summable $(C, 1+\alpha)$ to the value 0 .
8) S. Izumi and G. Sunouchi: Tôhoku Math. Journ., (2) 1, 313-326 (1950).
9) S. Izumi: Journ. Math. Soc., Japan, 1, 226-231 (1949).
10) K. Yano: Loc. cit.
11) Cf. R. Mohanty and N. Nanda: Proc. American Math. Soc., 5, 79-84 (1654).
12) Cf. S. Izumi and G. Sunouchi: Loc. cit.
13) G. H. Hardy and J. E. Littlewood: Journ. London Math. Soc., 6, 283 (1931).

[^0]: 1) H. C. Chow: Journ. London Math. Soc., 16, 23-27 (1941). In this theorem, the case $\boldsymbol{\alpha}=1$ is O. Szász' theorem (Duke Math. Journ., 4, 401-407 (1938)).
 2) F. C. Hsiang: Bull. Calcutta Math. Soc., 44, 55-58 (1952).
 3) O. Szász: Trans. American Math. Soc., 50 (1942).
 4) Kenzi Yano: Nara Joshidai Kiyô (in Jap.), 1 (1951).
