31. On Blocks of Characters of the Symmetric Group

By Masaru Osima
Department of Mathematics, Okayama University, Okayama, Japan
(Comm. by K. Shoda, m.J.A., March 12, 1955)

The following basic theorem in the modular representation theory of the symmetric group S_{n} has been proved in various ways $(2,5)$.

Theorem. Two irreducible representations of S_{n} belong to the same block if and only if they have the same p-core.

In the present paper we shall give a new proof of this theorem.

1. Let $[\alpha]$ be a Young diagram of n nodes which contains α_{i} nodes in its i th row and α_{j}^{\prime} nodes in its j th column:

$$
\begin{equation*}
n=\sum_{i} \alpha_{i}=\sum_{j} \alpha_{j}^{\prime} . \tag{1}
\end{equation*}
$$

We denote by χ_{α} the character of the irreducible representation of S_{n} associated with [α] and by f_{α} its degree.

The node in the i th row and j th column of [α] is called its $i j$-node. It is called the corner of the $i j$-right hook that consists of this node and all nodes to the right of it or below it. Let us denote by $h_{i, j}$ the total hook length of the $i j$-right hook. The hook product H_{α} of [α] is the product of the n integers $h_{i, j}$ (3). Then we have

$$
\begin{equation*}
f_{\alpha}=n!/ H_{\alpha} . \tag{2}
\end{equation*}
$$

Lemma 1. If the kl-right hook of length $h_{k, l}=g$ is removed from [α] leaving $[\gamma]$, then

$$
\begin{array}{ll}
f_{a} / f_{r}=\frac{n!}{(n-g)!g!} K L M \text { with } & K=\prod_{i<k}\left(\left(h_{i, i}-g_{2}\right) / h_{i, l}\right), \\
L=\prod_{j<i}\left(\left(h_{k, j}-g\right) / h_{k, j}\right), & M=\prod_{k<i \leq \alpha^{\prime} l}\left(\left(g-h_{i, l}\right) / h_{i, l}\right) .
\end{array}
$$

Proof. We denote by $h_{i, j}^{\prime}$ the total hook length of the $i j$-right hook of [$\gamma]$. We see easily that

$$
h_{i, j}^{\prime}= \begin{cases}h_{i+1, j} & \text { if } k \leqq i<\alpha_{l}^{\prime}, j<l, \tag{3}\\ h_{k, j, j}-g & \text { if } i=\alpha_{i}^{\prime}, j<l, \\ h_{i, j+1} & \text { if } i<k, l \leqq j<\alpha_{k}, \\ h_{i, l}-g & \text { if } i<k, j=\alpha_{k}, \\ h_{i+1, j+1} \text { if } k \leqq i, l \leqq j, \\ h_{i, j} \text { otherwise. }\end{cases}
$$

Moreover we have (3, Lemma 1)

$$
\begin{equation*}
\prod_{i \leq j \leq \alpha_{k}} h_{k, j} \operatorname{II}_{k<t \leq x_{2}^{\prime}}\left(g-h_{i, l}\right)=g! \tag{4}
\end{equation*}
$$

The lemma is proved easily by (2)-(4).
If we set $\beta_{i}=h_{i, 1}, \beta_{j}^{\prime}=h_{1, j}$, then we see that Lemma 1 is identical with the lemma (4, p. 101) since

$$
\begin{aligned}
& h_{i, l}-g=\beta_{i}-\beta_{k}(i<k), h_{k, j}-g=\beta_{j}^{\prime}-\beta_{\iota}^{\prime}(j<l) \\
& g-h_{i, l}=\beta_{k}-\beta_{i}\left(k<i \leqq \alpha_{\iota}^{\prime}\right)
\end{aligned}
$$

In what follows we set $g=p$, a prime number. Let $[\alpha]$ be a diagram of n nodes with p-core $\left[\alpha_{0}\right]$ and $[\alpha]^{*}$ be its star diagram. Suppose that $[\alpha]$ is of weight b. We then have by (3)

$$
\begin{equation*}
H_{\alpha}=p^{b} H_{\alpha} * H_{\alpha}^{\prime} \tag{5}
\end{equation*}
$$

where H_{α}^{\prime} is the product of all $h_{i, j}$ which are prime to p and $H_{\alpha *}$ denotes the hook product of $[\alpha]^{*}$.

Lemma 2. If the kl-right hook of length $h_{k, l}=p$ is removed from
[α] leaving [$\gamma]$, then

$$
H_{\alpha}^{\prime} \equiv(-1)^{r+1} H_{r}^{\prime} \quad(\bmod p)
$$

where r denotes the leg length of the kl-right hook.
Proof. It follows from (4) that

$$
\prod_{1<j \leq \alpha_{k}} h_{k, j} \prod_{k<i \leq \alpha_{l}^{\prime}}\left(p-h_{i, l}\right)=(p-1)!\equiv-1 \quad(\bmod p)
$$

whence

$$
\prod_{l<j \leq x_{k}} h_{k, j, j<i \leq x^{\prime} l} \prod_{i, l} \equiv(-1)^{r+1} \quad(\bmod p) .
$$

This, combined with (3), yields our assertion.
Using Lemma 2 we obtain by induction the
Lemma 3. If the p-core $\left[\alpha_{0}\right]$ is obtained from $[\alpha]$ by removing successively b-hooks T_{i} of leg length r_{i}, then
(6)

$$
H_{a}^{\prime} \equiv(-1)^{\sigma+b} H_{\alpha_{0}} \quad(\bmod p)
$$

where $\sigma=\sum_{i} r_{i}$.
If we denote by $\chi_{\alpha} *$ the character of the reducible representation $[\alpha]^{*}$ of S_{b} associated with the star diagram $[\alpha]^{*}$ and by $f_{\alpha} *$ its degree, then we have by (3)

$$
\begin{equation*}
f_{\alpha^{*}}=b!/ H_{\alpha^{*}} . \tag{7}
\end{equation*}
$$

We shall set $\omega_{\alpha}(G)=g(G) \chi_{\alpha}(G) / f_{\alpha}$, where $g^{\prime}(G)$ is the number of elements in the class of G. Let G be an element possessing $b p$-cycles and let G_{0} be the element of $S_{n-b p}$ obtained from G by removing those $b p$-cycles. Then we obtain by (9)

$$
\begin{equation*}
\chi_{\alpha}(G)=(-1)^{\sigma} f_{\alpha} * \chi_{a_{0}}\left(G_{0}\right) \tag{8}
\end{equation*}
$$

Suppose that G has exactly $b p$-cycles. Using (2), (5)-(8) we have the relation (11) in (5):
(9) $\quad \omega_{a}(G) \equiv(-1)^{b} \omega_{\alpha_{0}}\left(G_{0}\right) \quad(\bmod p)$.
(Observe that $\omega_{\alpha}(G)$ and $\omega_{r_{0}}\left(G_{0}\right)$ are rational integers and $H_{\alpha_{0}}$ is prime to p.) This congruence (9) holds however also for those elements G which possess more than b-cycles; for the both sides vanish then. Thus we obtain as in (5):

If two irreducible representations of S_{n} belong to the same block, then they have the same p-core.

Remark. Applying the Murnaghan-Nakayama recursion formula we have $\sum_{\alpha} \chi_{\approx}(V) \chi_{\alpha}(S)=0$ for any p-regular V and for any p-singular
S, where the sum extends over all [α] of S_{n} with the same p-core. Hence we can derive also the same result (8, Theorem 3).

We set $n=n^{\prime}+a p$, where $0 \leqq n^{\prime}<p$. Denote by $t(l)$ the number of p-cores with $n^{\prime}+l p$ nodes. We have by the above discussion

$$
\begin{equation*}
\sum_{l=0}^{o} t(l) \leqq s(n) \tag{10}
\end{equation*}
$$

where $s(n)$ denotes the number of blocks of S_{n}. In section 2 we shall prove that the equality sign holds in (10).
2. We shall apply the general theory of blocks of characters (1 , $\S \delta 1-4)$ to S_{n}. Let \mathfrak{J} be any p-subgroup of S_{n} and let its order be $p^{n}, h>0$. We consider a subgroup \mathfrak{N} which satisfies the condition (11)

$$
\mathfrak{y} C(\mathfrak{y}) \subseteq \mathfrak{N} \subseteq N(\mathfrak{S})
$$

Denote the center of the modular group ring $\Gamma^{*}\left(S_{n}\right)$ by Λ^{*}. As was shown in (1), there exists the ideal T^{*} such that

$$
\begin{equation*}
R^{*} \cong \Lambda^{*} / T^{*} \tag{12}
\end{equation*}
$$

where R^{*} denotes the subring of the center $\Lambda^{*}(\Re)$ of the modular group ring $\Gamma^{*}(\Re)$.

We consider a block B of weight b with the defect group \mathfrak{D}. The defect d of B is zero if and only if $b=0$. Now we assume that $b>0$. Then \mathfrak{D} contains an element $Q=P_{1} \cdot P_{2} \ldots P_{m}$ of order p, where no two of P_{i} have common symbols and each P_{i} is a p-cycle. We have

$$
\begin{equation*}
N(Q) \cong S_{n-m p} \times S(m, p) \tag{13}
\end{equation*}
$$

where $S(m, p)$ is the generalized symmetric group $(6,7)$ and consists of those permutations which transform the cycles P_{i} into each other. Let \mathfrak{P}_{m} be the p-Sylow-subgroup of $S(m, p)$. Since $S(m, p)$ possesses only one block (for p), the defect group of every block of $N(Q)$ contains $\mathfrak{B}_{m}(2, \S 2, I X)$. In (11) we now take \mathfrak{F} as the group generated by Q and $\Re=N(Q)$. Let E^{*} be the primitive idempotent element of Λ^{*} that corresponds to B. Then E^{*} does not lie in T^{*} in (12) since $Q \in \mathscr{D}$ (8). Consequently we have $\mathfrak{P}_{m} \subseteq \mathfrak{D}$ (1, Theorem 1). Thus we have proved that the defect group of every block of a positive defect contains a p-cycle. Hence we may assume without restriction that every defect group $\neq 1$ contains a fixed p-cycle P. Now we take \mathfrak{F} in (11) as the group generated by P and $\mathfrak{R}=N(P)=S_{n-p} \times\{P\}$. By our assumption every primitive idempotent element of Λ^{*} that corresponds to a block of a positive defect does not lie in T^{*}. It follows from (12) that

$$
\begin{equation*}
s(n)-t(a) \leqq s(n-p) \tag{14}
\end{equation*}
$$

since $N(P)$ possesses $s(n-p)$ blocks and R^{*} is the subring of the center $\Lambda^{*}(N(P))$. Now we shall prove our theorem by induction. Since $t(0)=s\left(n^{\prime}\right)$, we shall assume that $\sum_{l=0}^{k} t(l)=s\left(n^{\prime}+k p\right)$ for $k<a$.

We then obtain by (14)

$$
\begin{equation*}
s(n) \leqq t(a)+\sum_{l=0}^{a-1} t(l)=\sum_{l=0}^{\alpha} t(l) \tag{15}
\end{equation*}
$$

(10) and (15) yield $s(n)=\sum_{l=0}^{a} t(l)$, and the proof of our theorem is complete.
3. Let B be a block of weight b with p-core $\left[\alpha_{0}\right]$. We shall determine the defect group of B. If $e(a)$ denotes the exponent of the highest power of p dividing an integer a, then

$$
\begin{equation*}
e\left(n!/ f_{\alpha}\right)=(e(b p)!)-e\left(f_{a} *\right), \quad[\alpha] \subset B \tag{16}
\end{equation*}
$$

Since $\left(f_{a *}, p\right)=1$ for a suitable $[\alpha] \subset B$, the defect $d(b)$ of B is given by

$$
\begin{equation*}
e((b p)!)=b+e(b!) . \tag{17}
\end{equation*}
$$

We consider an element $Q_{b}=P_{1} . P_{2} \ldots P_{b}$ of order p. Then $N\left(Q_{b}\right)=$ $S_{n-b p} \times S(b, p)$. Let \Re_{b} be the p-Sylow-subgroup of $S(b, p)$. The order of \Re_{b} is $d(b)$. Since $\left[\alpha_{0}\right]$ is the p-core, if we choose a suitable p regular element G_{0} of $S_{n-b p}$ such that the order of the normalizer $N^{*}\left(G_{0}\right)$ of G_{0} in $S_{n-b p}$ is prime to p, then $\omega_{\alpha_{0}}\left(G_{0}\right) \neq 0(\bmod p)$. Let G^{\prime} be an element of S_{n} possessing bp 1-cycles and assume that G_{0} is obtained from G^{\prime} by removing those $b p$ 1-cycles. Then \mathfrak{P}_{b} is the p-Sylow-subgroup of the normalizer $N\left(G^{\prime}\right)$ of G^{\prime} in S_{n}. Now we choose \mathfrak{F} in (11) as the group generated by Q_{b} and $\mathfrak{R}=N\left(Q_{b}\right)$. We then have by the relation (5) in (1) the following congruence (see 5, p. 117):
(18) $\quad \omega_{\alpha}\left(G^{\prime}\right) \equiv \omega_{\alpha_{0}}\left(G_{0}\right) \equiv 0 \quad(\bmod p)$,
whence $\mathfrak{D} \subseteq \Re_{b}$ (8). Since two groups have the same order, we obtain (19)

$$
\mathfrak{D}=\mathfrak{F}_{b} .
$$

This proves Theorem 1 (2).

References

1) R. Brauer: On blocks of characters of groups of finite order I, Proc. Nat. Acad. Sci. U.S.A., 32, 182-186 (1946).
2) R. Brauer and G. de B. Robinson: On a conjecture by Nakayama, Trans. Roy. Soc. Canada, Sec. III, 41, 11-19, 20-25 (1947).
3) J. S. Frame, G. de B. Robinson, and R. M. Thrall: The hook graphs of the symmetric group, Can. J. Math., 6, 316-324 (1954).
4) T. Nakayama: On some modular properties of irreducible representations of symmetric groups I, Jap. J. Math., 17, 89-108 (1941).
5) T. Nakayama and M. Osima: Note on blocks of symmetric groups, Nagoya Math. J., 2, 111-117 (1951).
6) M. Osima: Some remarks on the characters of the symmetric group II, Can. J. Math., 6, 511-521 (1954).
7) M. Osima: On the representations of the generalized symmetric group, Math. J. Okayama Univ., 4, 39-56 (1954).
8) M. Osima: Notes on blocks of group characters, Math. J. Okayama Univ., 4 (1955), to appear shortly.
9) R. M. Thrall and G. de B. Robinson: Supplement to a paper by G. de B. Robinson, Amer. J. Math., 73, 721-724 (1951).
