31. On Blocks of Characters of the Symmetric Group

By Masaru OSIMA

Department of Mathematics, Okayama University, Okayama, Japan (Comm. by K. SHODA, M.J.A., March 12, 1955)

The following basic theorem in the modular representation theory of the symmetric group S_n has been proved in various ways (2, 5).

Theorem. Two irreducible representations of S_n belong to the same block if and only if they have the same p-core.

In the present paper we shall give a new proof of this theorem.

1. Let $[\alpha]$ be a Young diagram of *n* nodes which contains α_i nodes in its *i*th row and α'_j nodes in its *j*th column:

(1)
$$n = \sum_{i} \alpha_{i} = \sum_{j} \alpha_{j}.$$

We denote by χ_a the character of the irreducible representation of S_n associated with $[\alpha]$ and by f_a its degree.

The node in the *i*th row and *j*th column of $[\alpha]$ is called its *ij*-node. It is called the corner of the *ij*-right hook that consists of this node and all nodes to the right of it or below it. Let us denote by $h_{i,j}$ the total hook length of the *ij*-right hook. The hook product H_{α} of $[\alpha]$ is the product of the *n* integers $h_{i,j}$ (3). Then we have (2) $f_{\alpha} = n!/H_{\alpha}$.

Lemma 1. If the kl-right hook of length $h_{k,l}=g$ is removed from $[\alpha]$ leaving $[\gamma]$, then

$$f_a/f_{ au} = rac{n!}{(n-g)! \ g!} KLM \ with \ K = \prod_{i < k} ((h_{i,i} - g_i)/h_{i,i}), \ L = \prod_{j < l} ((h_{k,j} - g)/h_{k,j}), \qquad M = \prod_{k < k \leq a'_1} ((g - h_{i,l})/h_{i,l}).$$

Proof. We denote by $h'_{i,j}$ the total hook length of the *ij*-right hook of $[\gamma]$. We see easily that

$$(3) h'_{i,j} = \begin{cases} h_{i+1,j} & \text{if } k \leq i < a'_i, \ j < l, \\ h_{k,j} - g & \text{if } i = a'_i, \ j < l, \\ h_{i,j+1} & \text{if } i < k, \ l \leq j < a_k, \\ h_{i,l} - g & \text{if } i < k, \ j = a_k, \\ h_{i+1,j+1} & \text{if } k \leq i, \ l \leq j, \\ h_{i,j} & \text{otherwise.} \end{cases}$$

Moreover we have (3, Lemma 1)

$$(4) \qquad \qquad \prod_{l \leq j \leq a_k} h_{k,j} \prod_{k < l \leq a'_l} (g - h_{i,l}) = g!.$$

The lemma is proved easily by (2)-(4).

If we set $\beta_i = h_{i,1}$, $\beta'_j = h_{1,j}$, then we see that Lemma 1 is identical with the lemma (4, p. 101) since

M. OSIMA

$$\begin{array}{l} h_{i,i} - g = \beta_i - \beta_k \ (i < k), \ h_{k,j} - g = \beta'_j - \beta'_i \ (j < l), \\ g - h_{i,i} = \beta_k - \beta_i \ (k < i \leq a'_i). \end{array}$$

In what follows we set g=p, a prime number. Let $[\alpha]$ be a diagram of n nodes with p-core $[\alpha_0]$ and $[\alpha]^*$ be its star diagram. Suppose that $[\alpha]$ is of weight b. We then have by (3)

(5) $H_a = p^b H_a * H'_a,$ where H'_{a} is the product of all $h_{i,j}$ which are prime to p and H_{a*}

denotes the hook product of $[\alpha]^*$.

Lemma 2. If the kl-right hook of length $h_{k,l} = p$ is removed from $[\alpha]$ leaving $[\gamma]$, then

$$I'_{\mathfrak{a}} \equiv (-1)^{r+1} H'_{\mathfrak{r}} \qquad (\text{mod } p),$$

where r denotes the leg length of the kl-right hook.

Proof. It follows from (4) that

$$\prod_{l < j \leq a_k} h_{k,j} \prod_{k < i \leq a'_l} (p - h_{i,l}) = (p-1)! \equiv -1 \quad (\text{mod } p),$$

whence

 $\prod_{\substack{l < j \leq a_k \\ k < l \leq a'_l}} h_{k,j} \prod_{k < l \leq a'_l} h_{i,l} \equiv (-1)^{r+1}$ (mod p).

This, combined with (3), yields our assertion.

Using Lemma 2 we obtain by induction the

Lemma 3. If the p-core $[a_0]$ is obtained from [a] by removing successively b p-hooks T_i of leg length r_i , then (_1)°+°H (6) $(\mod p),$ where $\sigma = \sum_{i} r_i$.

If we denote by χ_{a*} the character of the reducible representation $[\alpha]^*$ of S_b associated with the star diagram $[\alpha]^*$ and by f_{α^*} its degree, then we have by (3)

 $f_{a*} = b! / H_{a*}$. (7)

We shall set $\omega_{\alpha}(G) = g(G)\chi_{\alpha}(G)/f_{\alpha}$, where g(G) is the number of elements in the class of G. Let G be an element possessing b p-cycles and let G_0 be the element of S_{n-bp} obtained from G by removing those b p-cycles. Then we obtain by (9)

(8)
$$\chi_{\alpha}(G) = (-1)^{\sigma} f_{\alpha} * \chi_{\alpha_0}(G_0)$$

Suppose that G has exactly b p-cycles. Using (2), (5)-(8) we have the relation (11) in (5):

(9) $\omega_{\alpha}(G) \equiv (-1)^{\flat} \omega_{\alpha_{0}}(G_{0})$ $(\mod p).$

(Observe that $\omega_{\alpha}(G)$ and $\omega_{\gamma_0}(G_0)$ are rational integers and H_{α_0} is prime to p.) This congruence (9) holds however also for those elements Gwhich possess more than b p-cycles; for the both sides vanish then. Thus we obtain as in (5):

If two irreducible representations of S_n belong to the same block, then they have the same p-core.

Remark. Applying the Murnaghan-Nakayama recursion formula we have $\sum_{\alpha} \chi_{\alpha}(V) \chi_{\alpha}(S) = 0$ for any *p*-regular V and for any *p*-singular

$$H_a^{*} \equiv (-1)^{**} H_{a_0}$$

(12)

S, where the sum extends over all $[\alpha]$ of S_n with the same *p*-core. Hence we can derive also the same result (8, Theorem 3).

We set n=n'+ap, where $0 \leq n' < p$. Denote by t(l) the number of *p*-cores with n'+lp nodes. We have by the above discussion

(10)
$$\sum_{l=0}^{n} t(l) \leq s(n),$$

where s(n) denotes the number of blocks of S_n . In section 2 we shall prove that the equality sign holds in (10).

2. We shall apply the general theory of blocks of characters (1, \S S1-4) to S_n . Let \mathfrak{H} be any *p*-subgroup of S_n and let its order be p^n , h>0. We consider a subgroup \mathfrak{N} which satisfies the condition (11) $\mathfrak{H}C(\mathfrak{H})\subseteq \mathfrak{N}\subseteq N(\mathfrak{H}).$

Denote the center of the modular group ring $\Gamma^*(S_n)$ by Λ^* . As was shown in (1), there exists the ideal T^* such that

$$R^* \simeq \Lambda^* / T^*,$$

where R^* denotes the subring of the center $\Lambda^*(\mathfrak{N})$ of the modular group ring $\Gamma^*(\mathfrak{N})$.

We consider a block B of weight b with the defect group \mathfrak{D} . The defect d of B is zero if and only if b=0. Now we assume that b>0. Then \mathfrak{D} contains an element $Q=P_1.P_2...P_m$ of order p, where no two of P_i have common symbols and each P_i is a p-cycle. We have

(13)
$$N(Q) \simeq S_{n-mp} \times S(m, p),$$

where S(m, p) is the generalized symmetric group (6, 7) and consists of those permutations which transform the cycles P_i into each other. Let \mathfrak{P}_m be the *p*-Sylow-subgroup of S(m, p). Since S(m, p) possesses only one block (for *p*), the defect group of every block of N(Q) contains \mathfrak{P}_m (2, §2, IX). In (11) we now take \mathfrak{H} as the group generated by *Q* and $\mathfrak{N}=N(Q)$. Let E^* be the primitive idempotent element of Λ^* that corresponds to *B*. Then E^* does not lie in T^* in (12) since $Q \in \mathfrak{D}$ (8). Consequently we have $\mathfrak{P}_m \subseteq \mathfrak{D}$ (1, Theorem 1). Thus we have proved that the defect group of every block of a positive defect contains a *p*-cycle. Hence we may assume without restriction that every defect group $\neq 1$ contains a fixed *p*-cycle *P*. Now we take \mathfrak{H} in (11) as the group generated by *P* and $\mathfrak{N}=N(P)=S_{n-p}\times \{P\}$. By our assumption every primitive idempotent element of Λ^* that corresponds to a block of a positive defect does not lie in T^* . It follows from (12) that

(14)
$$s(n) - t(a) \leq s(n-p),$$

since N(P) possesses s(n-p) blocks and R^* is the subring of the center $\Lambda^*(N(P))$. Now we shall prove our theorem by induction. Since t(0)=s(n'), we shall assume that $\sum_{l=0}^{k} t(l)=s(n'+kp)$ for k < a. M. OSIMA

(15)
$$s(n) \leq t(a) + \sum_{l=0}^{a-1} t(l) = \sum_{l=0}^{a} t(l).$$

(10) and (15) yield $s(n) = \sum_{l=0}^{a} t(l)$, and the proof of our theorem is complete.

3. Let B be a block of weight b with p-core $[a_0]$. We shall determine the defect group of B. If e(a) denotes the exponent of the highest power of p dividing an integer a, then

(16) $e(n!/f_a) = (e(bp)!) - e(f_{a*}), \qquad [a] \subset B.$ Since $(f_{a*}, p) = 1$ for a suitable $[a] \subset B$, the defect d(b) of B is given by

(17) e((bp)!)=b+e(b!).We consider an element $Q_b=P_1.P_2...P_b$ of order p. Then $N(Q_b)=S_{n-bp}\times S(b, p)$. Let \mathfrak{P}_b be the p-Sylow-subgroup of S(b, p). The order of \mathfrak{P}_b is d(b). Since $[\alpha_0]$ is the p-core, if we choose a suitable p-regular element G_0 of S_{n-bp} such that the order of the normalizer $N^*(G_0)$ of G_0 in S_{n-bp} is prime to p, then $\omega_{\alpha_0}(G_0) \equiv 0 \pmod{p}$. Let G' be an element of S_n possessing bp 1-cycles and assume that G_0 is obtained from G' by removing those bp 1-cycles. Then \mathfrak{P}_b is the p-Sylow-subgroup of the normalizer N(G') of G' in S_n . Now we choose \mathfrak{H} in (11) as the group generated by Q_b and $\mathfrak{N}=N(Q_b)$. We then have by the relation (5) in (1) the following congruence (see 5, p. 117):

(18) $\omega_{\alpha}(G') \equiv \omega_{\alpha_0}(G_0) \equiv 0 \pmod{p}$, whence $\mathfrak{D}\subseteq \mathfrak{P}_b$ (8). Since two groups have the same order, we obtain (19) $\mathfrak{D}=\mathfrak{P}_b$.

This proves Theorem 1 (2).

References

- R. Brauer: On blocks of characters of groups of finite order I, Proc. Nat. Acad. Sci. U.S.A., 32, 182-186 (1946).
- R. Brauer and G. de B. Robinson: On a conjecture by Nakayama, Trans. Roy. Soc. Canada, Sec. III, 41, 11-19, 20-25 (1947).
- J. S. Frame, G. de B. Robinson, and R. M. Thrall: The hook graphs of the symmetric group, Can. J. Math., 6, 316-324 (1954).
- T. Nakayama: On some modular properties of irreducible representations of symmetric groups I, Jap. J. Math., 17, 89-108 (1941).
- T. Nakayama and M. Osima: Note on blocks of symmetric groups, Nagoya Math. J., 2, 111-117 (1951).
- M. Osima: Some remarks on the characters of the symmetric group II, Can. J. Math., 6, 511-521 (1954).
- M. Osima: On the representations of the generalized symmetric group, Math. J. Okayama Univ., 4, 39-56 (1954).
- M. Osima: Notes on blocks of group characters, Math. J. Okayama Univ., 4 (1955), to appear shortly.
- R. M. Thrall and G. de B. Robinson: Supplement to a paper by G. de B. Robinson, Amer. J. Math., 73, 721-724 (1951).