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28. On the Riesy Logarithmic Summability of the
Conjugate Derived Fourier Series. I

By Masakiti KINUKAWA
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., March 12, 1955)

1. Let f(x) be an integrable function with period 2+ and its
Fourier series be

1.1 F@)~a,/2+ nZ: (@, cOS N+ b, sin ne)= goA,,(x).
We call the series
1.2) g}l (b, cos nx—a, sin nx)= g B,®),
;;i n(b, cos nx— a, sin nx)= g; Al
and
(1.8) gn(a,, cos nx + b, sin nx) = g nA,(x)

conjugate series, derived series and conjugate derived series of (1.1),
respectively.

The infinite series >)a, is said to be summable by Riesz’s
logarithmic mean of order o, or simply summable (R, log, ), to
sum s, provided that

Ro)=—L S (log w/n)a,
(log w)* #<w
tends to a limit s, as w—> .

The summability by Riesz’s logarithmic means of the Fourier
series was treated by Hardy [1], Takahashi [8], and Wang [4],
[6], [6]. Wang has proved the Riesz summability analogue of
Bosanquet’s theorem concerning Cesaro summability of Fourier
series. This theorem was extended to the derived Fourier series
by Matsuyama [2]. In this paper we shall prove the analogue for
the conjugate derived Fourier series and some related theorems.

We shall introduce some notations. Let us put

() =9(),
_ 1 - u \*" g(u)
00= e f (log7> Mgy (@>0).

Then g,(t) / <log %—)a is called the Riesz logarithmic mean of g(¢) of

order a. If the Riesz logarithmic mean of g(¢)—s tends to zero as
t—0, then we write

]tllgl g(t):S (Ra log, a).
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We denote by ¢i(¢t) the Bth integral of g.(¢), that is,
1 13
%) =—— | C—w)’"gu.(w)du,
O pgy | 00

gg(t):ga(t)-
2. In what follows we put

P(O)=p(@, )= {F@+D)+f@—t)=2s cost],
o= [ 2L au

and suppose that @(t)/t is integrable in (0, ). Then our theorems
are stated as follows.
Theorem 1. If

l’l:’lg’& g(t)=0 (R’ log, a),
>

then the conjugate derived Fourier series of f(t) is summable (R, log,
a+2) to s at the point x, where a=0.
Theorem 2. If we suppose
] e ( ;1_ >a
[ga(u)du_ga(t)—o[t lOg‘ ; :I
and

f" | 9o+ t«;-— 9L go—o Klog %)H 2J ,

1
then the conjugate derived Fourier series of f(t) is summable (R, log,
a+2) to s at the point x, where o= 0.
Theorem 3. If the conjugate derived Fourier series is summable
(R, log, @), then we have
limg®)=0 (B, log, a+1+e),

where o =2 and ¢ is a positive number.

3. We start by some lemmas which need for the proof of our
theorems.V

Lemma 1. Let us put

.= [ ‘ <log -11&—) sin ut du
0

Jor a>—1. Then we have the following relations:

0(1) SJor t >0 and a>—1,
(8.1) S, ()= {O[(log' O)*t]  for £=2, a =0,
O[(og t)**t] for t=2, 0 <a<l,
. , O[(log t)*/t*]  for t =2, a=1,
8.2 Sa(6)= {O(I/t““) for t=2 0=<a<l,
(3.3) SJ(8)=0[(log )*/t*] for t=2, a1,
(8.4) 8.(0)=0 (a>—1),

1) Cf. Matsuyama [2] and Wang [4], [6], [7].
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(8.5) S, ()=(1—-cos t)/t,
(8.6) [£S@) ) =aS.a4()  Sfor a>0,
I'r+s+2) ! 1V
8.7 S, g1t Sy(ut) (log =) d
®.7) (0= 1’(r+1)1’(s+1)f (“)<°gu> “
for r>—1, s>—1.
Lemma 2.
-z-fwsa(u) sin xu du:(log-l)a Jor 0<x<1,
ar A X
=0 for x=1.

4. Proof of Theorem 1. The (R, log, B) means of the conjugate
derived Fourier series is denoted by

)= og oy 2 (1082 n4,@)

and the Fourier series of @(f) becomes
Pp(t)~ i A, (x) cos nt—s cos .

Since S{(¢) and S{(2) (/3> 1) are integrable in (0, «), by Young’s
theorem, we get

f S wt)p(t)dlt = z‘,A f SY(wt) cos nt dt—s f” Si(wt) cos t dt,

0
where the nth term of the right side series is

f Si(wt) cos nt dt= l:}— S(wt) cos nt]w+ n f oQ.S',,(wt) sin nt dt
0 @ o @9
T n )\ n
z{gg(log;ﬁ for —w—<1,
0 for " >1,

w
by Lemma 2. Hence

2 f Si(wl) p(t)di = — L. <log ; ) s+ S A @ (Iog%’—)si—z.

Therefore

Rﬂ(w)——s_g (log ) f SY(wt)p(t)dt

_2 (t) _
4.1) =2 s f %[Bsp_l<wt> Sylot) |dt,

by Lemma 1, (8.6). If we put ¢(f)/t=£&(t), then, by integration by
parts, we get

fon sy f E()S,.(wt) dt

(]0 o) [él(t)sp 1(wt)] 0;’ 5 [ E()S, 1 (wt)dt
= Rl + RZ)
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where p is a sufficiently large but fixed number. Assuming 8=2,
and by (8.2) and f v¢(u)/u du=0(1), we get

Ri= (10; )’ [O { (Iog:’tt)a—l }T:O % 102 o )
1

p

Rz=0{ (1022;)? ,, ﬂ?g;t?ii dt} =0 (315 l_oé;).

Similarly we get

and

on sy f &(1)Sy(wt) dt=0(1/p).

On the other hand we have, by integration by parts and by (38.1),
(8.6),

(low . f §(&)Ss-1(wt) dt

= g oy [IOESat) |+ 2 (8~1) f oS, (wt)dt

(o,
— O[g()/log ]+ o(1)+ 2B=1) “’“3 1) f o()S, o(wt) de.
We also get

J S OSkot 4=00a) + oty 28 [a(0S,- (o)

(log )"
Summing up above estlmatlons, we see that

(42) Bo)—s=2 o o ] [ oD BE—1)S, o(wt)— BS, () 1dt +0(1),

for sufficiently large p and B =2.

Suppose B8>2 and let A=[B—2], then, by % time application
of integration by parts, we get

[ 008 ot) de=(8—D(8=3)---(8=2=1) ["S\s - (@ias®) dt.
Usgng here the formula® 0
Ine:(B)=
and (8.7), we have
(4.8) f "9®)S,_o(et) dt
4

_(B=2)(8—8)---(8—2—h) [“Sﬁ_h_s(wt)dt{ ["(log %"“’“&-jﬂ} du}

£>h-3+2 95 —2(%) du,
u

F(k+11—,8+2) tfﬂ(l

1 (h+1—-8+2)
_(B—=2)(B—8):--(B—2—h) (™ g, (1) w w \PB+e
B I'(h+3—8) Of W Df (108” —,;) Sp-n-s(wt) di

2) Cf. Wang [6], Lemma 3.
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=1(8=1) [ S wu)gy-a0) du.
0
By similar estimation we get
(4.4) [ 9t)Sy-st) dt=1(8) f " Sy(wt)gpa(£) dt.

0 0
Substituting (4.3) and (4.4) into (4.2) and using (3.5), we get the
following relation
45)  Bywy—s=2 LB [Tg g 0] 175 dt+0(0).
m (logw)’ t
Let us now put 8=a+2(a=>0), then

_g=2 I'(e+3) (7 _ 1—coswt
WO Reo)—s=2 D, ) (00— ...8)| 9598 41+ o(1)

By the assumption of the theorem,

ga(t)=0[<log%>a} ga+1(t)=0[<log~1—>m}

as t—>0. Hence, if we divide the integral (4.6) into those with the
ranges (0, 2/w) and (2/w, ) and use the estimation (1—cos wt)/t=0(w)
or =0(1/t), we can easily get
(4.7) Ra+2(w)_8::0(1)-
Thus Theorem 1 is completely proved.

(To be continued)
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