# 48. Some Trigonometrical Series. XII 

By Shin-ichi Izumi<br>Mathematical Institute, Tokyo Metropolitan University, Tokyo<br>(Comm. by Z. Suetuna, m.J.A., April 12, 1955)

1. A. Zygmund [1] has proved the following theorems.

Theorem 1. Let $a(x)$ be a positive, decreasing and convex function in the interval $(0, \infty)$ such that
(1)

$$
a(x) \downarrow 0, \quad x a(x) \uparrow \quad a s x \uparrow \infty .
$$

Let $a_{n}=a(n)$ and

$$
\begin{equation*}
\bar{f}(x)=\sum_{n=1}^{\infty} a_{n} \sin n x \tag{2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\bar{f}(x) \sim x^{-1} a\left(x^{-1}\right) \quad \text { as } x \rightarrow 0 . \tag{3}
\end{equation*}
$$

Theorem 2. Let $a(x)$ be a positive, decreasing and convex function in the interval $(0, \infty)$, tending to zero as $x \rightarrow \infty$. Let $a_{n}=a(n)$ and suppose that

$$
\begin{equation*}
n \Delta a_{n} \downarrow, \sum a_{n}=\infty \tag{4}
\end{equation*}
$$

If we put

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} \cos n x \tag{5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
f(x) \sim \int_{0}^{1 / x} t\left|a^{\prime}(t)\right| d t \quad \text { as } x \downarrow 0 \tag{6}
\end{equation*}
$$

Omitting the second condition of $a(x)$ in (1), we prove the following

Theorem 3. Let $a(x)$ be a positive, decreasing and convex function in the interval $(0, \infty)$, tending to zero as $x \rightarrow \infty$. Let $a_{n}=a(n)$ and define $\bar{f}(x)$ by (2), then

$$
\begin{equation*}
\bar{f}(x) \sim x \int_{0}^{1 / x} t a(t) d t \quad \text { as } x \rightarrow 0 \tag{7}
\end{equation*}
$$

when $\bar{f}(x)$ is not bounded or the right side is ultimately positive.
If the second condition of (1) is satisfied, then we can easily see that (7) becomes (3).

In Theorem 2 we can replace the first condition of (4) by $\Delta^{3} a_{n} \leqq 0$, that is,

Theorem 4. Let $a(x)$ be a positive, decreasing and convex function in the interval $(0, \infty)$, tending to zero as $x \rightarrow \infty$ and let $-a^{\prime}(t)$ be convex. Let $a_{n}=a(n)$ and suppose that $\sum a_{n}=\infty$. Then

$$
f(x) \sim \int_{0}^{1 / x} t\left|a^{\prime}(t)\right| d t \quad \text { as } x \rightarrow 0
$$

Our proof of these theorems is very simple, except that the following lemma is used [2] (cf. [3]):

Lemma. If $a_{n} \downarrow 0$, then

$$
\begin{aligned}
& \bar{f}(x)=\int_{0}^{\infty} a(t) \sin x t d t+\bar{g}(x), \\
& f(x)=\int_{0}^{\infty} a(t) \cos x t d t+g(x),
\end{aligned}
$$

where $\bar{g}(x)$ and $g(x)$ are bounded.
2. We shall prove Theorem 3. By Lemma, it is sufficient to prove that

$$
\overline{f_{1}}(x)=\int_{0}^{\infty} a(t) \sin x t d t
$$

satisfies the relation (8). We have
where

$$
\bar{f}_{1}(x)=\int_{0}^{\pi / 2 x} b_{x}(t) \sin x t d t
$$

$$
\begin{aligned}
b_{x}(t) & =a(t)+\sum_{k=1}^{\infty}(-1)^{k+1}\left[a\left(\frac{k \pi}{x}-t\right)-a\left(\frac{k \pi}{x}+t\right)\right] \\
& =\sum_{k=0}^{\infty}(-1)^{k}\left[a\left(\frac{k \pi}{x}+t\right)+a\left(\frac{(k+1) \pi}{x}-t\right)\right] .
\end{aligned}
$$

By the monotonity of $a(t)$, we get

$$
b_{x}(t) \leqq a(t)+a\left(\frac{\pi}{x}-t\right)
$$

and by the convexity of $a(t)$, we get
Hence

$$
b_{x}(t) \geqq a(t) .
$$

$$
\begin{equation*}
\bar{f}_{1}(x) \geqq \frac{2}{\pi} x \int_{0}^{\pi / 2 x} t a(t) d t \geqq A x \int_{0}^{1 / x} t a(t) d t \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{f}_{1}(x) & \leqq x \int_{0}^{\pi / 2 x} t a(t) d t+x \int_{\pi / 2 x}^{\pi / 2 x}\left(\frac{\pi}{x}-t\right) a(t) d t \\
& \leqq A x \int_{0}^{\pi / 2 x} t a(t) d t \leqq A x \int_{0}^{1 / x} t a(t) d t .
\end{align*}
$$

Thus we get (7).
We shall now prove the following
Theorem 5. Let $a(x)$ be a positive decreasing sequence such that there is a positive constant $c<1$ such that
(10) $\quad a(t)>c a(3 t) \quad(t>0)$.

Let $a_{n}=a(n)$ and define $\bar{f}(x)$ by (2), then (7) holds when $\bar{f}(x)$ is unbounded or the right of (7) is ultimately positive.

In the proof of Theorem 3, we did not use the convexity of ( $a_{n}$ ) to prove (9). We shall prove (8) by the condition (10). By the monotonity of $a(t)$,

$$
\begin{aligned}
\bar{f}_{1}(x) \geqq & \int_{0}^{\pi / 2 x} a(t) \sin x t+\int_{3 \pi / 2 x}^{2 \pi / x} a(t) \sin x t d t \\
& =\int_{0}^{\pi / 2 x}\left[a(t)-a\left(\frac{2 \pi}{x}-t\right)\right] \sin x t d t \\
& \geqq A x \int_{0}^{\pi / 2 x} t a(t) d t
\end{aligned}
$$

Thus we get (8), and hence the theorem is proved.
3. Let us now prove Theorem 4. Let

$$
\begin{aligned}
f_{1}(x) & =\int_{0}^{\infty} a(t) \cos x t d t \\
& =-\frac{1}{x} \int_{0}^{\infty} a^{\prime}(t) \sin x t d t=-\frac{1}{x} \int_{0}^{\pi / 2 x} b_{x}^{\prime}(t) \sin x t d t
\end{aligned}
$$

where $b_{x}^{\prime}(t)$ denotes the term-wise differentiated series of $b_{x}(t)$ by $t$. Hence, from the proof of Theorem 3, we get the required result.

Finally we shall prove the following
Theorem 6. Let $a(x)$ be a positive, decreasing and convex function in the interval $(0, \infty)$, tending to zero as $x \rightarrow \infty$. Let $a_{n}=a(n)$ and $\sum a_{n}=\infty$. Then

$$
f(x) \leqq A \int_{0}^{1 / x} t\left|a^{\prime}(t)\right| d t \quad \text { as } x \rightarrow 0
$$

For, we write

$$
f_{1}(x)=\int_{0}^{\infty} a(t) \cos x t d t=\int_{0}^{\pi / 2 x} c_{x}(t) \cos x t d t
$$

where

$$
c_{x}(t)=\sum_{k=0}^{\infty}(-1)^{k}\left[a\left(\frac{k \pi}{x}+t\right)-a\left(\frac{(k+1) \pi}{x}-t\right)\right] .
$$

By the convexity of $a(t)$,
and then

$$
c_{x}(t) \leqq a(t)-a(\pi / x-t)
$$

$$
\begin{gathered}
f_{1}(x) \leqq \int_{0}^{\pi / 2 x} \cos x t[a(t)-a(\pi / x-t)] d t \\
=-\int_{0}^{\pi / 2 x} \cos x t d t \int_{t}^{\pi / x-t} a^{\prime}(u) d u \\
=-\int_{0}^{\pi / 2 x} a^{\prime}(u) d u \int_{0}^{u} \cos x t d t-\int_{\pi / 2 x}^{\pi / x} a^{\prime}(u) d u \int_{0}^{\pi / x-u} \cos x t d t \\
\leqq-\frac{A}{x} \int_{0}^{\pi / 2 x} a^{\prime}(u) \sin x u d u \leqq-A \int_{0}^{\pi / 2 x} a^{\prime}(u) u d u
\end{gathered}
$$

Thus we get the required inequality.

## References

[1] A. Zygmund: Trigonometrical series, Warszawa, 114-116 (1936).
[2] R. Salem: Comptes Rendus, 207 (1939).
[3] S. Izumi and M. Satô: Tôhoku Math. Journ., 6 (1954).

