46. Note on the Mean Value of $\mathrm{V}(\mathrm{f})$

By Saburô Uchiyama
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., April 12, 1955)

1. Let $G F(q)$ be a fixed finite field of order $q=p^{\nu}$ and put the polynomial

$$
\begin{equation*}
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x \quad\left(a_{j} \in G F(q)\right) \tag{1.1}
\end{equation*}
$$

where $1<n<p$. By $V(f)$ we denote the number of distinct values $f(x), x \in G F(q)$. L. Carlitz [1] has recently proved by an elementary method, that the sum

$$
\begin{equation*}
\sum_{a_{1} \in G F(q)} V(f) \geqq \frac{q^{3}}{2 q-1}>\frac{q^{2}}{2}, \tag{1.2}
\end{equation*}
$$

the summation being over the coefficient of the first degree term in $f(x)$; in other words, we have

$$
V(f)>\frac{q}{2}
$$

on the average. This result may be compared with a theorem of the present author (cf. [2]).

In this note we wish to present the following analogue to (1.2):
Theorem. We have

$$
\begin{equation*}
\sum_{\operatorname{deg} j=n} V(f)=\sum_{r=1}^{n}(-1)^{r-1}\binom{q}{r} q^{n-r} \quad(1 \leqq n<p), \tag{1.3}
\end{equation*}
$$

where the summation on the left-hand side extends over all primary polynomials of degree n of the form (1.1).

As an immediate consequence of (1.3) we get

$$
\sum_{\text {def } f-n} V(f) \geqq \frac{q^{n-1}(q+1)}{2}>\frac{q^{n}}{2}
$$

with the equality only for $n=2$.
2. For $x \in G F(q)$, we define, as in $[1, \S 2]$,

$$
\begin{equation*}
e(x)=e^{2 \pi i s(x) / p}, S(x)=x+x^{p}+\cdots+x^{p^{p-1}} . \tag{2.1}
\end{equation*}
$$

It is clear that $e(x+y)=e(x) e(y)$ and

$$
\sum_{\infty} e(x y)= \begin{cases}q & (y=0) \tag{2.2}\\ 0 & (y \neq 0) .\end{cases}
$$

The theorem being true for $n=1$, we may suppose that $n>1$. If we denote by $M_{r}(1 \leqq r \leqq n)$ the number of $y \in G F(q)$ for which the equation $f(x)=y$ has precisely r distinct roots in $G F(q)$, then we have

$$
\begin{equation*}
V(f)=\sum_{r=1}^{n} M_{r}, \quad q=\sum_{r=1}^{n} r M_{r} \tag{2.3}
\end{equation*}
$$

Further, if $N_{k}(f)(1 \leqq k \leqq n-1)$ is the number of solutions (x_{1}, x_{2}, $\left.\ldots, x_{k+1}\right)$ in $G F(q)$ of the system of equations

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{k+1}\right)
$$

with the condition

$$
\begin{equation*}
x_{j_{1}} \neq x_{j_{2}} \text { if } j_{1} \neq j_{2} \tag{2.4}
\end{equation*}
$$

then

$$
N_{k}(f)=\sum_{r=1}^{n} r(r-1) \cdots(r-k) M_{r}
$$

and using (2.3) we get (writing N_{k} for $N_{k}(f)$)

$$
\begin{equation*}
V(f)=q-\frac{N_{1}}{2!}+\frac{N_{2}}{3!}-\cdots+(-1)^{n-1} \frac{N_{n-1}}{n!} . \tag{2.5}
\end{equation*}
$$

On the other hand, by repeating use of (2.2), it is easy to see that

$$
q^{k} N_{k}(f)=\sum_{t_{1}, \ldots, t_{k}} \sum_{x_{1}, \ldots, c_{k+1}}^{\prime} e\left(\sum_{j=1}^{k} t_{j}\left(f\left(x_{j}\right)-f\left(x_{j+1}\right)\right)\right),
$$

where Σ^{\prime} indicates that the summation implied is over all x_{j} 's that x_{i+1} satisfy (2.4).

We need the following lemma.
Lemma. If not all of the t_{j} are zero, then we have

$$
\begin{equation*}
\sum_{a_{n-1}, \ldots, a_{1}} \sum_{x_{1}, \ldots, x_{k-1}}^{\prime} e\left(\sum_{j=1}^{k} t_{j}\left(f\left(x_{j}\right)-f\left(x_{j+1}\right)\right)\right)=0 \tag{2.6}
\end{equation*}
$$

for $1 \leqq k \leqq n-1$.
In fact, if the sum on the left-hand side of (2.6) were not zero, there would be certain elements $x_{1}, x_{2}, \ldots, x_{k+1}$ in $G F(q)$, satisfying (2.4), such that

$$
\sum_{j=1}^{k} t_{j}\left(x_{j}^{s}-x_{j+1}^{s}\right)=0
$$

for $s=1,2, \ldots, n-1$, and a fortiori for $s=1,2, \ldots, k$. However, this is impossible since the determinant

$$
\left|\begin{array}{cccc}
x_{1}-x_{2} & x_{2}-x_{3} & \cdots & x_{k}-x_{k+1} \\
x_{1}^{2}-x_{2}^{2} & x_{2}^{2}-x_{3}^{2} & \cdots & x_{k}^{2}-x_{k+1}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
x_{1}^{b}-x_{2}^{k} & x_{2}^{h}-x_{3}^{k} & \cdots & x_{k}^{k}-x_{k+1}^{k}
\end{array}\right|=(-1)^{\frac{k(k+1)}{2}} \operatorname{II}_{j_{1}<j_{2}}\left(x_{j_{1}}-x_{j_{2}}\right) \neq 0 .
$$

Now, by virtue of the lemma, we have

$$
q^{k} \sum_{a_{n-1}, \ldots, a_{1}} N_{k}(f)=q^{n-1} \cdot q(q-1) \cdots(q-k)
$$

Hence we obtain finally

$$
\begin{aligned}
\sum_{a_{n-1}, \ldots, a_{1}} V(f) & =q^{n}+\sum_{a_{n-1}, \ldots, a_{1}} \sum_{k=2}^{n}(-1)^{k-1} \frac{N_{k-1}}{k!} \\
& =q^{n}+\sum_{k=2}^{n}(-1)^{k-1} \frac{q^{n-k} \cdot q(q-1) \cdots(q-k+1)}{k!} \\
& =\sum_{k=1}^{n}(-1)^{k-1}\binom{q}{k} q^{n-k},
\end{aligned}
$$

which completes the proof of (1.3).
3. As is easily seen from (1.3), we have
(3.1) $\quad V(f)=c_{n} q+O(1)$
on the average, where

$$
c_{n}=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n-1} \frac{1}{n!} .
$$

It will be interesting to note that the coefficient c_{n} gives, in some known cases, the actual size of $V(f)$, e.g. $c_{1}=1, c_{2}=1 / 2, c_{3}=2 / 3$, $c_{4}=5 / 8$, and $c_{n}>5 / 8$ for $n \geqq 5$. Therefore, it may be worth while to decide under what circumstances the relation (3.1) can in fact hold for a certain polynomials of higher degree. To assume the absolute irreducibility of the associated polynomial

$$
f^{*}(u, v)=\frac{f(u)-f(v)}{u-v}
$$

in $\left.G F_{[}^{-} q, u, v\right]$ seems sufficient.

References

[1] L. Carlitz: On the number of distinct values of a polynomial with coefficients in a finite field, Proc. Japan Acad., 31, 119-120 (1955).
[2] S. Uchiyama: Sur le nombre des valeurs distinctes d'un polynôme à coefficients dans un corps fini, Proc. Japan Acad., 30, 930-933 (1954).

