
272 [Vol. 31,
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and Their Applications

By Kazb TsuJ
Kyushu Institute of Technology

(Comm. by K. KUNU(I, M.Z.A., May 13, 1955)

Recently M. Tomita has obtained remarkable results concerning
the irreducible decomposition theory of C*-algebra with identity
operator (cf. 6). (C*-algebra is a uniformly closed self-adjoint
operator algebra on a Hilbert space.) In this present paper we shall
first extend his results to the case of arbitrary C*-algebra without
identity operator. It seems to us that these results are the best
generalization of tasks of M. Nakamura-Y. Misonou 3], R. Godement
[1, and H. Umegaki 83. Secondly, applying this decomposition
theorem to non-separable locally compact groups, we shall have an
irreducible decomposition of unitary representation. It contains a
generalization of some results of R. Godement 2. Throughout this
paper, we shall use notations, terminologies and results of 6.

From M. Tomita’s letter we know that he obtained results
analogous to ours. His results not yet known to us will be published
in the near future. Our special thanks are given to M. Tomita,
whose kindness made this publication of our paper possible.

1. Decompositions of states and traces. Any state p given on
C*-algebra A in which identity operator I does not necessarily
exist, there exists a normal representation {A, Lz(p), b} of A with
the following properties:

1 A is a representative algebra of A on a Hilbert space LZ(p),
i.e. there exists a continuous *-algebraic homomorphism A- A of
A onto a dense sub-algebra of A;

2 a set (Ab" A e A) is everywhere dense in L(p);
(3) p(A)-(Ab,b) for every AeA, where ) is the inner

product of L2(p).
Conversely, a normal representation {A, L2(p), b} of A given, p defined
by p(A)--(Ab, b) is a state on A. This correspondence between
states and normal representations is unique within equivalence (I. E.
Segal’s well-known theorem: Theorem 1 of 5).

Now let A be C*-algebra obtained by adjoining identity operator
I to C*-algebra A. Let p be a state on A and let {A, LZ(p), b} be

the corresponding normal representation. And let A denote C*-

1) Numbers in brackets refer to the references at the end of this paper.
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algebra obtained by supplement of identity operator I on L2(p) to

A. Theu. [A-, L2(p), i9} is plainly a normal representation of .
The diagonal algebra E of A,, i.e. a commutative algebra

E=(E [_)A,)’2) on L(p) is also a diagonal algebra of A, because we

have (E[J A,)=E. Let us put R-=-E[.JA,-EO A. Then the linear
functional t on R defined by t(R)--(R, ) for every R e R is a state

on R. Moreover jRt, L2(t), }, where L(t) =L2(p), = b, and R=R,
is clearly the normal representation corresponding to the state t.
Now the state t is reducible state (i.e. for every state r t, there
exists at least one 0 K e E (the center of R) which satisfies r(R)
=t(KR) for every Re R), and since the contraction t of t to E
is a state on the commutative algebra E, it determines a non-
negative Borel measure on the spectrum ( of E. We denote the
measure by the same letter t.. Then the support of t coincides
with @, and we shall obtain M. Tomita’s spectral decomposition of
he state t"

t

where * (for ) are the states on R called derivative states of t,
and almost all * in reference to the measure t r, are irreducible (i.e.
in the terminology of I. E. Segal, pure) (el. Lemmas 5.2, 5.3, Theorems
2 and 3 of [6).

To make notations brief, we shall denote L2(*), t, Rt (for R e R),

Az (for A A), A,, (for A A), R,, the uniform closure of (Az,"
A e A) and the uniform closure of (Az" A e A) respectively by L2(),, R, A-, A;, Rz, A-, and A for every . Then [Rz, L2i), } (for

e ) are normal representations, of R, and almost all [Rz, L2(), J}
are irreducible. Secondly, for each e i" defined by ,t(A)-t(A,)
for every A e A is a state on A. Let [Az, L2(), } be the normal

representation corresponding to the state , and let A be C*-algebra

obtained by adjoining I to A,. Then [A, L2(), } is a normal
representation of A. On the other hand, putting ,(A)-,(A)for
every A e A, is a state of A. Then [A, L2(), }, where L2()
=L2(), =, and A;=A, is also a normal representation of A, and

we have A=R (cf. Lemma 5.4 of [6). But since we have ’(A)
=(A;2, )-(A,, 2)=(Az, ), two normal representations [A,
L(), } and [A-, L(), } are equivalent. And since [A, L(,),

2) Let M UN denote the smallest C*-algebra which contains two C*-algebras M
and N, and M is the commutator of M.
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} is irreducible if and only if ’ is irreducible, [A, L(),},
therefore, fA, L(), } is irreducible if and only if * is irreducible.
Then we have he following:

Lemma 1. Almost all states (for e ) in reference to the
measure t are irreducible.

And also we have in general the following lemma:
Lemma 2. If r is a cdnter-reducble trace (i.e. center-reducible

central state) on A, then derivative states of r are traces.
Proofi By Theorem 2 of 6, if r is center-reducible, then we

have

r(KA)=fK()(A)dr() for every A e A, K e Z (the center).
And if r is a trace, then we have r(KAB)=r(KBA) for every A, B e A,
K e Z. Therefore we have

j K(2)2"(AB)drz(2)- 2)2"(BA)drz(2) for every A, B A, K Z,
that is, i(AB)=(BA) for every A, B A. Q.E.D.

Then putting r-t, we obtain the following theorem:
THEOREM 1. Let p be a state on A in which identity operator I

does not necessarily exist, and let E be the diagonal algebra on L(p).
Then there exists a reducible Borel measure on the spectrum of
E, and for each there corresponds the state on A with the
following properties:

1 (A) is continuous in for every fixed A A;
(2) almost all in reference to the measure have ][

)=fK()(A)dr() for every A e A, K E;3

(4) almost all in reference to the measure r are irreducible;
(5) if p is a trace on A, then almost all are characters (i. e.

irreducible traces).
Let denote he set of all states r on A with ][rl[l, and

let denote the set of all irreducible states t on A with
Then the correspondence is a weakly continuous mapping of

into , and almost all belong to . Therefore, the image
of with respect to the mapping is contained in %he weak closure
t of 0. Let p be he Borel measure induced by r in . We may

regard p as a Borel measure on whose support is . And almost
all states in in reference to the measure are irreducible.
Secondly, let M denote *-algebra of all essentially bounded p-measur-

3) If r is the state on A whose contraction rz to the center Z of A is a reducible
state, then r is called center-reducible.

4) For instance, cf. Proof of Theorem 1 of I. E. Segal" Decompositions of operator
algebras. I, Mem. Amer. Math. Soc., No. 9 (1951),
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able functions on . Then we have
THEOREM 2. Let 19 be a state on A, and let E be the diagonal

algebra on L(p). Then there exists a Borel measure p on with the
following properties:

(1) - is g-measure 0;
(2) for every S e M there exists K e E which satisfies that

for every A A;

( 3 the correspondence $-->K is *-algebraic isometric isomorphism
of M onto E;

(4) if p is a trace, then almost all o are characters.
The proof of this theorem will not be made here as its proof is

similar to that of Theorem 3 which we shall show below.
2. Applications to topological groups. Let G be an arbitrary

locally compact group, and let L(G) be its L-group algebra. If cp
is any continuous positive definite function on G, then by the well-
known method we may obtain a Hilbert space L(cp). Let f-->f,
denote a mapping of L(G) to a dense sub-set of L(cp). If U;, is
the representation on L(cp) of L(G), then we have U;g-(fg)) for
every f, g L(G), and there exists the element e L(cp) which
satisfies-

(U;p, )=f f(a)o(a)da ior every f LI(G).
G

Let A be the uniform closure of the set (U;v’f e L(G)), then
A is clearly C*-algebra. We may define a state q on A by the
following way: q(A) (A, ) for every A e A. Since {A, L(cp),
} is the normal representation corresponding to cp, by virtue of
Theorem 1, if we denote the diagonal algebra on L(q) by E, then we

obtain the decomposition of q" p=; vdr(), and moreover we have

)=f K()(A)dr() or every A A, K(AK, E.

On the other hand, since (or each e @) is a state on A, we
may have a bounded positive linear functional q% on L(G) which is
defined by cp).(f)=(U;,) for every f e L(G). Therefore, there exists
a Hilbert space L(ox), and let U; be the unitary representation
on L(cpz) o2 G, then by the well-known theorem we may obtain
the continuous p. d. function cp on G which is defined by q(a)=
(U;vfp, ) for a e G. And since q is an elementary continuous p. d.
function on G if is an irreducible state, almost all cp are elemen-

5) Of course, fg(a)=jf(b)g(b-la)db, f*(a)=p(a)(f(a-1)),.
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tary continuous p.d. functions on G.
Let (G) denote the set of all p.d. functions @ on G with

]] 1] 1 in the dual space L(G) of L(G), and let (G) denote the
set of all elementary p.d. functions : with 1[ ) [] 1. Then -is a weakly continuous mapping of into (G) and almost all
belong to t(G). Therefore, the image )(G) of with respect to the
mapping is contained in the weak closure (G) of (G). Let r be
the Borel measure induced by r in ’(G). Then we may regard

as a Borel measure on (-G) whose support is )(G). And almost all

% in (G) in reference to r are elementary. Now let M(G) denote
*-algebra of all essentially bounded r-measurable functions $ on (G),
and for every $ e M(G) let $ denote the -measurable function on
which is defined by the ollowing way: ()-(cp) or every e @.
Then we have

Lemma 3. If belongs in M(G), then there exists K E which

satisfies K()=() a.e. and (U;K, )-f x(f)$(x)dr(X).

Proof. The generality of the lemma will not be lost under the
assumption that 0 1. Let r denote he state on E--C(()

r(E)--f $()E()dr(). Then we have rwhich is defined by

Therefore, by the reducibility of r there exists 0 K e E which

satisfies (E).-(KE)=f K()E()d() 2or every E E. It follows

from these that K()--$*() a.e. and

@ (G)

This concludes the lemma. Q.E.D.
Lemma 4. The c rrespondence $-K is *-algebraic isometric

isomorphism of M(G) onto E.

Proof. For every $ e M(G) we have

Then $->K is *-algebraic isometric isomorphism of M(G)onto a sub-
algebra F o E. Now in order to prove that F:E, it is sufficient
to show that for every K E with 0 K I there exists $ s M(G)
having K-K. For such K E let denote a positive linear func-

tional on C(t(G)) which is defined by k(x)-;x’(2)K()dr() for

xC(O%(G)). Since I:>K0, we have r___>_@=>0. Then + is
absolutely continuous with respect to the measure r. Therefore,
there exists a bounded r-measurable function $ on (G)(G) which
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satisfies We shall now show that K--K.
Since K(2)--$(2) a.e., we have ]x’(i)K(2)dr(2)--/x’(i)K(2)dr(),

every U; e A we have f(U;)K()dr()therefore, especially for

--f(U,)K()d(); and we thus have (UK,c)-(U;K,,,).
It follows from this that (KU;, U,)-(KU,, U;) for every
f, g L(G), and the set (U;’f L(G)) is everywhere dense in L(rp),
therefore, we have K-K. Hence we have F=E as we wished
prove. Q.E.D.

The next theorem now follows at once from that if {f’} C L’(G)
is a singularly directed system with respect to a e G (cf. [4]), then
[U] tends weakly to

THEOREM 3. Let G be a locally compact group, let (G) be the
set of all elementary positive definite functions ) on G with ][ :g-I[-1
and let (G denote the weak closure of (G). Given a continuous
positive definite function q on G and the diagonal algebra E on L(q).
Then there exists a Borel measure r with the following properties:

(1) (G)-(G) is r-measure 0;
( 2 ) let M(G) be *-algebra of all essentially bounded r-measurable

functions $ on (G), then for every $ e M(G) there exists K e E which
satisfies

)=; (;))(a)dr()) for every a e G;
3 ) the correspondence $ -> K is *-algebraic isometric isomor-

phism of M(G) onto E;
(4) if o is a continuous central positive definite function on G,

then almost all ) in reference to the measure r are elementary con-
tinuous central positive definite functions.

What is written in this paper is a mere summary. Details
will be discussed elsewhere when published in a more general form
accompanied by other statements.
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