75. Some Trigonometrical Series. XIV

By Shin-ichi Izumi
Department of Mathematics, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., June 13, 1955)

1. E. Hille and G. Klein [1] have proved the following theorem: Theorem 1. If $f(t)$ is integrable and is not constant, then (1)

$$
m_{1}(h) \leqq A \omega_{1}(h),
$$

where

$$
\begin{aligned}
& m_{1}(h)=\max _{0 \leq \leq \leq 3 \pi} \int_{0}^{h}|f(x+t)| d t, \\
& \omega_{1}(h)=\max _{|t| \leq h} \int_{0}^{3 \pi}|f(x+t)-f(x)| d x .
\end{aligned}
$$

Their proof depends on the theory of interpolation polynomials. We shall give here a direct proof of Theorem 1. Further we can prove its p th power analogue. That is,

Theorem 2. If $f(t)$ belongs to the L^{p}-class and is not constant, then

$$
\begin{equation*}
m_{p}(h) \leqq A \omega_{p}(h) / h^{p-1} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& m_{p}(h)=\max _{0 \leq x \leq 2 \pi} \int_{0}^{h}|f(x+t)|^{p} d t, \\
& \omega_{p}(h)=\max _{|| | \leq n} \int_{0}^{2 \pi}|f(x+t)-f(x)|^{p} d x .
\end{aligned}
$$

Proof is similar to that of Theorem 1. ${ }^{1)}$
2. Proof of Theorem 1. Let $f(r, x)$ be the Poisson integral of $f(x)$, that is,

$$
\begin{equation*}
f(r, x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) P_{r}(t) d t \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{r}(t)=\left(1-r^{2}\right) / 2 \Delta_{r}(t), \\
& \Delta_{r}(t)=1-2 r \cos t+r^{2}=(1-r)^{2}-4 r \sin ^{2} t / 2 .
\end{aligned}
$$

It is well known [2] that $P_{r}(t)$ is non-negative and its integral in $(-\pi, \pi)$ equals to π. Then (3) gives

$$
\begin{align*}
f^{\prime}(r, x) & =-\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) P_{r}^{\prime}(t) d t \tag{4}\\
& =-\frac{1}{\pi} \int_{-\pi}^{\pi}[f(x+t)-f(x)] P_{r}^{\prime}(t) d t
\end{align*}
$$

[^0]where the dashes denote the differentiation with respect to x and t, respectively.

We have

$$
\begin{gathered}
f(t)=f(r, t)+[f(t)-f(r, t)], \\
\int_{x}^{x+h}|f(t)| d t \leqq \int_{x}^{x+h}|f(r, t)| d t+\int_{x}^{x+h}|f(t)-f(r, t)| d t=I+J .
\end{gathered}
$$

We can suppose $x=0$ and let $r=1-h$. Let ξ be a Lebesgue point of $f(t)$, then $|f(r, \xi)|$ is less than a constant for all $r<1$. By (4),

$$
\begin{aligned}
& I \leqq \int_{0}^{h} d t\left|\int_{\xi}^{t} f^{\prime}(r, u) d u\right|+A h=K+A h \\
& K \leqq A \int_{0}^{h} d t \int_{\xi}^{t} d u \int_{0}^{2 \pi} \frac{(1-r) v}{\Delta_{r}^{2}(v)}|f(u+v)-f(u)| d v
\end{aligned}
$$

since $P_{r}^{\prime}(t)=-\left(1-r^{2}\right) \sin t / r \Delta_{r}^{2}(t)$. Hence

$$
\begin{aligned}
K & \leqq A h \int_{0}^{h} d t \sum_{k=0}^{[2 \pi / h]+1} \int_{k h}^{(k+1) h} \frac{v d v}{\left(h^{2}+v^{2}\right)^{2}} \int_{\xi}^{t}|f(u+v)-f(u)| d v \\
& \leqq A \omega_{1}(h) h \sum_{k=0}^{[2 \pi / h]+1} \int_{k h}^{(k+1) h} \frac{v^{2} d v}{\left(h^{2}+v^{2}\right)^{2}} \\
& \leqq A \omega_{1}(h) h \int_{0}^{2 \pi} \frac{v^{2} d v}{\left(h^{2}+v^{2}\right)^{2}} \leqq A \omega_{1}(h) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& J=\frac{1}{\pi} \int_{0}^{h} d t\left|\int_{0}^{2 \pi}[f(t+u)-f(t)] P_{r}(u) d u\right| \\
& \leqq \frac{1}{\pi} \int_{0}^{2 \pi} P_{r}(u) d u \int_{0}^{h}|f(t+u)-f(t)| d t \\
& \leqq A \sum_{k=0}^{[2 \pi / h]+1} \int_{k h}^{(k+1) h} P_{r}(u) d u \int_{0}^{h}|f(t+u)-f(t)| d t \\
& \leqq A \sum_{k=0}^{[2 \pi / h]+1} \int_{k h}^{(k+1) h} P_{r}(u) d u\left(\int_{0}^{h}|f(t+u)-f(t+k h)| d t\right. \\
&\left.\quad+\int_{0}^{k h}|f(t+h)-f(t)| d t\right)
\end{aligned}
$$

$\leqq A \omega_{1}(h)$.
Thus Theorem 1 is proved.
We can also prove the theorem using the Cesàro mean $\sigma_{n}(x)$ ($h=1 / n$) instead of the Poisson mean $f(\nu, t)(\nu=1-h)$.
3. Proof of Theorem 2. Let $f(t)$ be a function of the L^{p} class. Using the notation in §2, we write

$$
\begin{aligned}
\left(\int_{x}^{x+h}|f(t)|^{p} d t\right)^{1 / p} & \leqq\left(\int_{x}^{x+h}|f(r, h)|^{p} d t\right)^{1 / p}+\left(\int_{x}^{x+h}|f(t)-f(r, t)|^{p} d t\right)^{1 / p} \\
& =I_{p}+J_{p}
\end{aligned}
$$

Then, taking $x=0$,

$$
\begin{aligned}
I_{p} & \leqq\left(\int_{0}^{h} d t\left|\int_{\xi}^{t} f^{\prime}(r, u) d u\right|^{p}\right)^{1 / p}+A h^{1 / p}=I_{p, 1}+A h^{1 / p}, \\
I_{p, 1}^{p} & \leqq A \int_{0}^{h} d t\left(\int_{\xi}^{t} d u \int_{0}^{2 \pi} \frac{h v}{\Delta_{r}^{2}(v)}|f(u+v)-f(u)| d v\right)^{p} \\
& \leqq A \int_{0}^{h} d t\left(\int_{0}^{2 \pi \pi} \frac{v^{2} d v}{\Delta_{r}^{2}(v)} \int_{\xi}^{t}|f(u+h)-f(u)| d u\right. \\
& \left.\quad+h \int_{0}^{2 \pi} \frac{v d v}{\Delta_{r}^{2}(v)} \int_{\xi}^{t}\left|f(u+v)-f\left(u+\left[\frac{v}{h}\right] h\right)\right| d u\right)^{p} \\
& \leqq A\left(\omega_{1}(h)\right)^{p} / h^{p-1} \leqq A \omega_{p}(h) / h^{p-1 .} .
\end{aligned}
$$

Finally

$$
\begin{aligned}
J_{p} & =\int_{0}^{h} d t\left|\int_{0}^{2 \pi}[f(u+t)-f(t)] P_{r}(u) d u\right|^{p} \\
& \leqq \int_{0}^{h} d t \int_{0}^{2 \pi} P_{r}(u)|f(u+t)-f(t)|^{p} d u \\
& \leqq A \omega_{p}(h) .
\end{aligned}
$$

Thus Theorem 2 is proved.

References

[1] E. Hille and G. Klein: Duke Math. Journ., 21 (1954).
[2] A. Zygmund: Trigonometrical series, Warszawa (1935).

[^0]: 1) For a non-constant linear function, the equality in (2) holds, hence $1 / h^{p-1}$ is the best possible factor.
