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165. On Coverings and Continuous Functions of
Topological Spaces

By dun-iti NAGATA
Department of Mathematics, Osaka City University

(Comm. by K. KUNUG, M.;I.A., Dec. 12, 1955)

The purpose of this paper is to study relations between con-
tinuous functions and locally finite coverings playing the important
r61e in recent topological developments. We shall establish a neces-
sary and-sufficient condition for a normal space to be fully normal
and a condition for metrizability by using families of continuous
functions and shall generalize Hausdorff’s extension theorem of
continuous function by using coverings.

Lemma. Let R be a topological space an V- {x f(x)
(<r), where f(-r) are real valued functions on R. If
a< is a covering of R, and if fi(x) is continuous for every

then has a locally finite refinement.

{x 1 } { __!22Proof. Let V- fi(x)>2- and V- xl(x)>
1 } (n > 2), then V+: V (i= 1 2...).

Define N=V, N=V- V+(1< a< r), then {N In-
1, 2,..., a<r} -R. For x e V implies x e V= for some n, and
x e V, x e V(Z< a), 1 < a< r imply x e V: or some n and f(x) O.

Since fi is continuous, there exists a nbd (=neighbourhood) U(x)
of x such that U(x) ( V+,)-. Hence x e V+, and hence

Next, we shall show {N, a<r} is locally finite. Let

f(x)>l 1 1 1 + } then VV+. If a eV, xtV
2 2 2 2 2

<<), hen (<-.-.-1 1 1 1 Since is con-
< 2 2 2 2+" <

inuous, there exists a nbd V(x)of x such that V(x) V=@(<a).
Moreover, x V+, and V+,N,-(a’>). Hence there exists
a nbd of x intersecting at most one of N(a < r). Therefore,
F-N is closed.

i) a, B, r denote ordinals in this lemma. In this note covering and refinement
mean open covering and open refinement respectively, and notations and terminologies
are chiefly due to J.W. Tukey: Convergence and uniformity in topology (1940). The
details of the content of this paper will be published in an another place.
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Define V,,: (x f,(x) > l 1 1 1 t2 2 2-- 3.2+

l,’’- x f(x) > 2---9.5 ,;- 8. --;-i- and

V’- V/’ (1 < a< r), then_
M. M is obvious. If a 2, x e M:, then since

V:, x V implies x e N. Since x V+ implies f(x)
1 1 1 and accordingly f(U(x))< 1 1

-2 2 2+ < --’" 2

i.e. U(x)(V)-# for some nbd U(x) of x, xV.
3" 2n+ <a <a

Hence x z Vg implies x V+ ) and x N. Thus we ge

--1

Now we denoCe -M,,, W-M- ,F(n 2).
Then = W n=l, 2,...; a<r} is a locally finite refinement

of . Firsly, we prove {W n=l, 2,... <r} =R, Since

N=R, for every x R Chere exisCs n such ha x e N for some

a< r and x N(m<n, fl< r). From N M we get x e M and
--1

x F, and hence x e W.
Since < is obvious, we ow lasIy Chat is locally finite.

If z e NZF, hen,NW= (m > k, fl < r). Then We denote-- lf()> .*
for and a<. If

here exists a nbd g@) of such ha g@)2(B<). Hence
V()M= and V@) W= (). oreover, e V and
ggM,,-(’>). herefore here exists a nbd g(z) of z iner-

seein a mos one of for . Hence he nbd V()
of intersects only finitely many W.

rom his lemma eombinin he heorem of A.H. Sone we

e easily he followinff heorems.
Theorem 1. I orge tha a T-pee R i fll ormal

there ei a famil {fl s A} of real valed fetio o R
ha f(gg)-O, f=l, f i eoio for ever BA.

A B

2) .f(U) k means f(x) k (x U).
3) We denote by N or C(N) the complement of hr.
4) A.H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc.,

4 (1948).
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Theorem 2. In order that a completely regular space R is fully
normag it is necessary and su;lcient that if " qa is a continuous

aA

function on R, then for every 0 there exists [f a e A} such tha
f ( A), -f < , and f is continuous for every

aA aA B
BA.

By using his heorem we get the ollowing proposition due o
K. Moria.)

Corollary 1. Let R be a normal space and R=. If F,

(n=l, 2,...) are closed and fully normal subspaces, then R is fully
normal.

The ollowing proposition due o K. Nagami) is a direct con-
sequence of the above lemma.

Corollary 2. Let R be a topological space and V- Ix [f(x)
(n=l, 2,...), where f (n=l, 2,...) are real valued continuous func-
tions on R. If = Vl n=l, 2,...} is a covering of R, then has
a locally finite refinement.

Theorem 3. In order that a T-space R is metrizable it is neces-
sary and sucient that there exists a family [f] e A} of real valued
continuous functions on R such that f, and .f are continuous

for every BA, and such that for every nbd U(x) of x there exists

f e {fleA}" f(x)<e and f(U"(x))e for some

Proof. We shall prove the sufficiency. Let V= [y f(y) <r}
W= [y f(y) >r} and let U.(B)-( V,., W,) for BA and

for rational numbers r’rO, where we define V,,.=R for

and W=R for C(B)=. Moreover, we define H,,=

Putting A(x)= a f(x)<--2 for a definite x R, we get,e(.)f(x)
and consequently M(x) y f(y)< r’ V, N(x)

[Yl f(y)r} W, where M(x)=R or A(x)-, N(x)=R

for C(A(x))-. Since fi(y) and fi(y) are continuous, M(x) and

N(x) are open nbd of x such %hat M(x)N(x) U,,(A(x)). Hence

Now we shall show that has a locally finite refinement. Obviously
f(x)<r’, if and only if @+ r’-f(f))<r. Therefore, M(x) N(x)

5) K. Morita: On spaces having the weak topology with respect to closed
coverings. II, Proc. Japan Acad., 30 (1954).

6) K. Nagami" Baire sets, Borel sets and some typical semi-continuous functions,
Nagoya Math. Journ., 7 (1954).

7) F denotes the interior of Fn.
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=- Y , f(y) - (r + r’--f(y)) > r To prove the continuity of

f(y) (r + r’-f(y)) B s } F(y) for an arbitrary 2

we denote by a the value of his function a a definite poin y of

R. For an arbitrary e >0 %here exists a s C(B)’fi(y)<a+- or a s B"
2

r+ r’-f(y)< a + for every B e . We denote by B’ the otality
2

of a such that a e C(B), f(y)< a + and by B" he totality of a such
2

that e B, r + r’-f(y) < a+ -. Since f is continuous, %here exists
2

a nbd U(y) of y such that f(U(y)) < a+ z. Since (r + r’-f(y))
aB

=r +r’-- f(y) is continuous, %here exists a nbd V(y) of y such
B

tha (r + r’-,(V(y)))< a + e. Hence F(U(y) V(y)) a + e. Since

f(y) (r +r’-f(y)) is obviously continuous, there exists a nbd

W(y) of y such that F(W(y))a-e. Therefore from he above
iemma has a locally finite refinement.

Lastly, let U(x) be a nbd of x, then there exists a positive
rational number r’ such that x e V,,U(x). Taking a rational
number r> O f(x)<r< r’, we get S(x, ,.,) U(x). For if x U,(B),
then since f(x)<r and consequently x W,, it mus be a e B.
Hence U,(B) V, U(x), and hence S(x, U,,) U(x).

Since {, ]r, r’ are rational positive numbers} is enumerable,
we ge$ the merizability of R from the theorem due o Y. Smirnov
and the author, s)

Conversely if R is metrizable, %hen {O(x, y) lx e R} satisfies %he
condition of this theorem, where (x, y) denotes a bounded distance
of R.

Theorem 4. Let R be a fully normal uniform space with the
uniform topology defined by the uniform coverings {, a’e A’} and
S a uniform space with the uniform topology defined by the uniform
coverings { e A} such that A’I=[AI-m. [f f is a continuous
mapping defined on a closed set F of R and having values in S, then
S can be imbedded in a uniform space T having a uniform covering
system with the cardinal m such that f can be continuously extended
to R with values in T such that the extension is a homeomorphism of
R-F with T-S, and such that S is a closed sub-uniform space of
T. If f is a homeomorphism, then the extension is also a homeo-
morphism.

) Y. Smirnov: A necessary d-Ufficien[t-}0
space, Doklady Akad. Nauk SSSR. N.S., 77 (1951). J. Nagata: On a necessary and
sufficient condition of metrizability, Journ. Inst. Polyth. Osaka City Univ., 1, No. 2
(1950).
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Proof. Obviously f-()= [f-*(N)IN } =lI is a normal) open
covering of F for every a e A. Hence we can choose lI,(i= 1, 2,...)
from [ e A such that lI , >1> >>.... Putting
= {(R-F) UU e H}, we get a covering = , of R such

hat F-. VF[ F e <H, <,. Since R is fully normal,
we can choose further a covering of R such that F<,
4. We can obtain successively in the same way a sequence of
coverings of R ,>>>>.. such hat ,
(i-1, 2,...).

Now we define a sequence of coverings of R from he above
sequence by ,= [., ,} IN(U, ), V(R-F) U e , V },
where N(U, .) denotes the open set V[ VF U, V
of R. Let us show ,>+(i=1, 2,...). We denote by x an
arbitra point of R. If S(x, +)F=, then there exists V
such that S(x, ,:+)=S(x, +)V. Hence S(x, +)V(R-F)
e. If x e R-F, S(, +) F, then since +< and
,F<,+, there exist Ve and Uoe,+ such that S(x, +) V,
VFUo e ,,+. If x e N(U, +), U e +, then UUo, and
hence from+4 S(Uo, ,+) U’ for some U’ e and VFU’.
Therefore S(x, +)N(U’, ). Since N(U, +)N(U’,) is
obvious, we obtain S(x, +)N(U’, ) e. If x e F, then S(x,
+) Ue, for some U, and consequemly S(x, :+) N(U,
Therefore ,’+ is established.

Putting (R-F)S=T, we define a mapping f* from R into
T by f*(z)=z(z e R-F), f*@)=f(x) @ F). Defining coverings, of T by f*(.)=, we have obviously >,+(i=1, 2,...;
eA). Furthermore, {S]eA; i=l,2,...}=[[eA} is
obvious. If x e R-F, then since F is closed, S(x, ,) F-- for
some ’ e A’, and consequently S2(x, ) F=. Therefore S(x,)
F=, and S(x, )S= is obvious. Hence S is a closed subset

of T. Furthermore, if x, y e T, x y, then obviously S(x,) $ y
for some ,:. Thus we can define a uniform opology iu R by the
uniform covering system [ I(, i) e C} [C is a finite sub-set of
{(, i)[ e A; i=1, 2,... and obtain the uniform space T and the
extension f* of f satisfying conditions in this heorem.

The following Hausdorff’s theorem is a special form of this
theorem for

Hausdo’s theorem2 if R and S are metric spaces, F is

9) /k covering of R is called normal when there exists a sequence [,1i=1,2,
} of coverings such that *+ <t< (i 1, 2 ).
10) F. Hausdorff: Erweiterung einer stetigen Abbildung, Fun. Math., 30 (1938).

Recently, R. Arens gives a short proof of this theorem by a different method from
us. R. Arens: Extension of functions on fully normal spaces, Pacific Journ. Math.,
11 (1952).
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closed set of R, and if f is a continuous mapping from F into S, then
S can be imbedded isometrically in a metric space T such that f can be
continuously extended to R with values in T, such that the extension
is a homeomorphism of R-F with T-S, and such that S is a closed
sub-space of T. If f is a homeomorphism, then the extension is also
a homeomorphism.

Lastly, let us discuss extension heorem in he case hat R is
not fully normal.

Theorem 5. Theorem 4 is valid when R is normal and F satisfies
the second countability axiom or when R is normal and S satisfies the
second countability axiom.

Proof. We assume that R is normal and F satisfies the second
countability axiom and that [t a e A} and [, a’ e A’} are uni-
formities o S and R respectively. If we denote by f a continuous
mapping on F having values in S, then f-(.)--lI is a normal
covering of F. We choose coverings from [f-())l e A} and ake
a sequence lI=lI>l/%lI>lI*.,>.., of coverings. Since F is
regular and satisfies the second countability axiom, there exists a
locally finite enumerable refinement 1= [Uln--1, 2... of lI. Let
us denote by lI0=[U0ln=l, 2,...} a covering of F such that
UoU, and consider continuous functions q on R such that
,o(U0) 1, q(F- U) 0, 0 o 1. If we put W.--Ix o.(x) 0 },

then ,- W.} covers F, F<lt. and W.- W F. Further-
t---1

more, we ake a continuous function o0 on R such hat p0(W)-l,
p0(F) 0, 0 po 1, and define U0 Ix fo(X) > 0}. Then we have an
enumerable covering tt= [U0, U, U.... of R such hat
Since R is normal, from Corollary 2 is a normal covering. Thus
we have a normal covering - 2, of R such that

Next we take a normal covering .o of R such that * <,
and a normal covering i: of R such that :F< 1/ in the same
way as in the case of. Putting :-.o, we have a normal
covering such that ,*..,<, 3F<lt. Repeating the above pro-
cesses we obtain a sequence of uniform coverings
>... o R such that <,, FII:+(i--I,2...) for every

aeA. The remainder o the proo is the same as the proof of
Theorem 4 and is omitted.


