162. On the Commutativity of Projection Operators

By Takasi Itô

Hokkaidô University
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1955)
Let P and Q be projection operators of closed linear manifolds M and N in a Hilbert space R, and $P \smile Q$ be a projection operator of the least closed linear manifold containing both M and N. It is known ${ }^{1)}$ that if P and Q are commutative: $P Q=Q P$, then we have for every $x \in R$

$$
\|P \smile Q x\|^{2} \leqq\|P x\|^{2}+\|Q x\|^{2} .
$$

In this paper we shall show that this necessary condition for $P Q=Q P$ is sufficient, too.

Theorem 1. For two projection operators P and Q, the following conditions are equivalent.

1) $P Q=Q P$.
2) $\|P \smile Q x\|^{p} \leqq\|P x\|^{p}+\|Q x\|^{p}(x \in R)$ for all p in $0<p \leqq 2$.
3) $\|P \smile Q x\|^{p} \leqq\|P x\|^{p}+\|Q x\|^{p}(x \in R)$ for some p in $0<p \leqq 2$.

Proof. If $P Q=Q P$, then we have $\|P \smile Q x\|^{2} \leqq\|P x\|^{2}+\|Q x\|^{2}$ $(x \in R)$. In the proof of 2) without loss of generality we can suppose $P \smile Q=I$ and $\|x\|=1$. Therefore, we have $\|P \smile Q x\|^{p}=1$ $=\|P \smile Q x\|^{2} \leqq\|P x\|^{2}+\|Q x\|^{2} \leqq\|P x\|^{p}+\|Q x\|^{p}$ for all p in $0<p \leqq 2$. Next we prove that 3) implies 1). As $(P \cup Q) P x=P x$, $(P \smile Q) Q P x$ $=Q P x$, and $P x=Q P x+(I-Q) P x$, we have $(P \smile Q)(I-Q) P x=(I-Q) P x$. Therefore, we conclude $\|(I-Q) P x\|^{p}=\|P \smile Q(I-Q) P x\|^{p} \leqq \| P(I-Q)$ $P x\left\|^{p}+\right\| Q(I-Q) P x\left\|^{p}=\right\| P(I-Q) P x \|^{p}$, and hence $\|(I-Q) P x\| \leqq$ $\|P(I-Q) P x\|$, so that $(I-Q) P=P(I-Q) P$, that is, $Q P=P Q P$. Therefore, we obtain $P Q=(Q P)^{*}=(P Q P)^{*}=P Q P=Q P$.

Theorem 2. For two projection operators P and Q, the following conditions are equivalent.

1) $P \leqq Q$ or $Q \leqq P$.
2) $\|P \smile Q x\|=\max \{\|P x\|,\|Q x\|\}(x \in R)$.
3) $\|P \smile Q x\|^{p} \leqq\|P x\|^{p}+\|Q x\|^{p}(x \in R)$ for all $p>2$.
4) $\|P \smile Q x\|^{p} \leqq\|P x\|^{p}+\|Q x\|^{p}(x \in R)$ for some $p>2$.

Proof. It is evident that 1) implies 2), 2) implies 3), and 3) implies 4), because $\max \{\|P x\|,\|Q x\|\} \leqq\left(\|P x\|^{p}+\|Q x\|^{p}\right)^{1 / p}$. We prove that 4) implies 1). By the similar method as in Theorem 1 we obtain $P Q=Q P$ from 4). Therefore, if we have not 1) for P and Q, there are x_{1}, x_{2}, and x_{3} such that $P(I-Q) x_{1}=x_{1} \neq 0, Q(1-P) x_{2}$

[^0]$=x_{2} \neq 0, x_{1}+x_{2}=x_{3}$, and $\left\|x_{3}\right\|=1$. Therefore, we have $P \smile Q x_{3}=x_{3}$, $P x_{3}=x_{1}, Q x_{3}=x_{2}$, and $\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}=1$, and hence $1=\left\|x_{3}\right\|^{p}=\left\|P \smile Q x_{3}\right\|^{p}$ $\leqq\left\|P x_{3}\right\|^{p}+\left\|Q x_{3}\right\|^{p}=\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}<\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}=1$. Thus 4) implies 1).

Theorem 3. For two projection operators P and $Q, P=Q$ is equivalent to $\|P \smile Q x\|^{2}=\|P x\|\|Q x\| \quad(x \in R)$.

Proof. If $\|P \smile Q x\|^{2}=\|P x\|\|Q x\|(x \in R)$, then we have $\|P \smile Q x\|^{2}$ $\leqq \frac{1}{2}\left(\|P x\|^{2}+\|Q x\|^{2}\right)$. As in the proof of Theorem 1, we obtain $\|(I-Q) P x\|^{2} \leqq \frac{1}{2}\|P(I-Q) P x\|^{2} \leqq \frac{1}{2}\|(I-Q) P x\|^{2} \quad(x \in R)$, therefore, $(I-Q) P=0$, that is, $P=Q P$. Similarly we also obtain $Q=P Q$. Therefore we have $P=(Q P)^{*}=P Q=Q$.

[^0]: 1) H. Nakano: Spectral theory in the Hilbert space, Tokyo Math. Book Series, 4 (1953), Theorem 12.7.
