162. On the Commutativity of Projection Operators

By Takasi ITÔ

Hokkaidô University (Comm. by K. KUNUGI, M.J.A., Dec. 12, 1955)

Let P and Q be projection operators of closed linear manifolds M and N in a Hilbert space R, and $P \smile Q$ be a projection operator of the least closed linear manifold containing both M and N. It is known¹⁾ that if P and Q are commutative: PQ=QP, then we have for every $x \in R$

$$||P \smile Qx||^2 \leq ||Px||^2 + ||Qx||^2.$$

In this paper we shall show that this necessary condition for PQ=QP is sufficient, too.

Theorem 1. For two projection operators P and Q, the following conditions are equivalent.

1) PQ=QP.

- 2) $||P \smile Qx||^{p} \leq ||Px||^{p} + ||Qx||^{p} (x \in R)$ for all p in 0 .
- 3) $||P \cup Qx||^{p} \leq ||Px||^{p} + ||Qx||^{p} (x \in R)$ for some p in 0 .

Proof. If PQ=QP, then we have $||P \smile Qx||^2 \leq ||Px||^2 + ||Qx||^2$ ($x \in R$). In the proof of 2) without loss of generality we can suppose $P \smile Q=I$ and ||x||=1. Therefore, we have $||P \smile Qx||^p=1$ $=||P \smile Qx||^2 \leq ||Px||^2 + ||Qx||^2 \leq ||Px||^p + ||Qx||^p$ for all p in 0 . $Next we prove that 3) implies 1). As <math>(P \smile Q)Px=Px$, $(P \smile Q)QPx$ = QPx, and Px=QPx+(I-Q)Px, we have $(P \smile Q)(I-Q)Px=(I-Q)Px$. Therefore, we conclude $||(I-Q)Px||^p=||P \smile Q(I-Q)Px||^p \leq ||P(I-Q)Px||$ $Px||^p+||Q(I-Q)Px||^p=||P(I-Q)Px||^p$, and hence $||(I-Q)Px|| \leq ||P(I-Q)Px|| \leq ||P(I-Q)Px||$, so that (I-Q)P=P(I-Q)P, that is, QP=PQP. Therefore, we obtain $PQ=(QP)^*=(PQP)^*=PQP=QP$.

Theorem 2. For two projection operators P and Q, the following conditions are equivalent.

- 1) $P \leq Q$ or $Q \leq P$.
- 2) $||P \cup Qx|| = \max \{||Px||, ||Qx||\} \ (x \in R).$
- 3) $||P \smile Qx||^{p} \leq ||Px||^{p} + ||Qx||^{p} (x \in R)$ for all p > 2.

4) $||P \cup Qx||^{p} \leq ||Px||^{p} + ||Qx||^{p} (x \in R)$ for some p > 2.

Proof. It is evident that 1) implies 2), 2) implies 3), and 3) implies 4), because max $\{||Px||, ||Qx||\} \leq (||Px||^p + ||Qx||^p)^{1/p}$. We prove that 4) implies 1). By the similar method as in Theorem 1 we obtain PQ=QP from 4). Therefore, if we have not 1) for P and Q, there are x_1, x_2 , and x_3 such that $P(I-Q)x_1=x_1 \neq 0$, $Q(1-P)x_2$

¹⁾ H. Nakano: Spectral theory in the Hilbert space, Tokyo Math. Book Series, 4 (1953), Theorem 12.7.

 $=x_{2} \neq 0, x_{1}+x_{2}=x_{3}, \text{ and } ||x_{3}||=1. \text{ Therefore, we have } P \cup Qx_{3}=x_{3}, Px_{3}=x_{1}, Qx_{3}=x_{2}, \text{ and } ||x_{1}||^{2}+||x_{2}||^{2}=1, \text{ and hence } 1=||x_{3}||^{p}=||P \cup Qx_{3}||^{p} \leq ||Px_{3}||^{p}+||Qx_{3}||^{p}=||x_{1}||^{p}+||x_{2}||^{p}<||x_{1}||^{2}+||x_{2}||^{2}=1. \text{ Thus } 4) \text{ implies } 1).$

Theorem 3. For two projection operators P and Q, P=Q is equivalent to $||P \smile Qx||^2 = ||Px|| ||Qx||$ $(x \in R)$.

Proof. If $||P \cup Qx||^2 = ||Px|| ||Qx||$ $(x \in R)$, then we have $||P \cup Qx||^2 \le \frac{1}{2}(||Px||^2 + ||Qx||^2)$. As in the proof of Theorem 1, we obtain $||(I-Q)Px||^2 \le \frac{1}{2}||P(I-Q)Px||^2 \le \frac{1}{2}||(I-Q)Px||^2$ $(x \in R)$, therefore, (I-Q)P=0, that is, P=QP. Similarly we also obtain Q=PQ. Therefore we have $P=(QP)^*=PQ=Q$.