155. On a Theorem of N. Jacobson

By Hisao Tominaga
Department of Mathematics, Okayama University, Japan
(Comm. by Z. Suetuna, m.J.A., Dec. 12, 1955)

Recently in his paper [2] N. Jacobson proved the following: If R^{\prime} is a division ring of characteristic $\neq 2$ which is finite over its center Z^{\prime} and a division ring R contains R^{\prime} and has left dimensionality $\left[R: R^{\prime}\right]_{l}=2$ then R is Galois over R^{\prime}.

In this note we shall extend this result to simple rings.
If R is a simple ring (i.e. a primitive ring with minimum condition) then the length of the composition series of the R-module R is denoted by [R]. In general, for a finitely generated unitary left R-module M, the length of the composition series of the R module M is denoted by $[M \mid R]_{r}$. As is well known, M possesses a linearly independent R-basis if and only if $[R]$ divides $[M \mid R]_{\imath}$ and the dimensionality $[M: R]_{l}=[M \mid R]_{l} /[R]$.

In the below, that R^{\prime} is a simple subring of a simple ring R will mean that the subring R^{\prime} is simple and the identity element of R^{\prime} is the same with that of R. And R will be said to be Galois over R^{\prime} if 1) R^{\prime} is an invariant subring of some automorphism group (S5 of $R, 2$) $[(\Im: \Im]<\infty$, where \mathfrak{F} is the totality of inner automorphisms in $(\mathscr{S}, 3) V\left(R^{\prime}\right)$, the centralizer of R^{\prime} in R, is simple and finite over Z (cf. [4]).

We set first the following
Lemma. Let R be a simple ring, R^{\prime} a simple subring of R, Z, and Z^{\prime} the centers of R and R^{\prime} respectively. If $\left[R \mid R^{\prime}\right]_{l}<\infty$ and $\left[R^{\prime}: Z^{\prime}\right]<\infty$ then $[R: Z]<\infty$. Conversely, if $[R: Z]<\infty$ then $\left[R^{\prime}: Z^{\prime}\right]$ $\leqq[R: Z]$.

Proof. Let $\left[R^{\prime}: Z^{\prime}\right]=g^{2},\left[R \mid R^{\prime}\right]_{\imath}=d$. Then $\left[R: Z^{\prime}\right]=g d$. If \mathfrak{Z} denotes the Z^{\prime}-linear transformation ring of the left Z^{\prime}-module R then \mathfrak{Z} contains R_{r}, all right multiplications by elements of R, and \mathfrak{Z} is isomorphic to $\left(Z^{\prime}\right)_{g d}$, the ring of $g d \times g d$ matrices over the commutative field Z^{\prime}. Since, in $\left(Z^{\prime}\right)_{g a}$, the polynomial identity $\left[x_{1}, \ldots, x_{2 g d}\right]=\sum \pm x_{i_{1}} \ldots x_{i_{2 g d}}=0$ holds, where the summation runs over all permutations of ($1, \ldots, 2 g d$) and the sign + and - according as the permutation is even or odd (see [1]), $\left[x_{1}, \ldots, x_{2 g d}\right]=0$ in R_{r}, whence also in R. As R is simple, by Theorem 1 of [3], R is of finite rank over Z. By making use of the same method as in the proof of Theorem 1 of [2], we shall obtain the last part.

Now we can extend Jacobson's theorem to simple rings as follows:

Theorem. Let R be a simple ring, R^{\prime} a simple subring of R, Z, and Z^{\prime} the centers of R and R^{\prime} respectively. If $\left[R ; R^{\prime}\right]_{l}=2,\left[R^{\prime}: Z^{\prime}\right]$ $<\infty$ and the characteristic of $Z^{\prime} \neq 2$, then R is Galois over R^{\prime}.

Proof. Our lemma shows that $[R: Z]<\infty$. We distinguish two cases: I. $R^{\prime} \supseteq Z$. It is well known that $V\left(V\left(R^{\prime}\right)\right)=R^{\prime}$ and $V\left(R^{\prime}\right)$ is simple. Since each element of a simple ring is represented as a sum of regular elements in the ring, R^{\prime} is the invariant subring of the inner automorphisms determined by all regular elements of $V\left(R^{\prime}\right)$. Clearly R is Galois over R^{\prime}. II. $R^{\prime} \equiv Z$. Let $t \in Z \backslash R^{\prime}$. Then $R^{\prime}+R^{\prime} t$ properly contains R^{\prime} and it is a two-sided R^{\prime}-module. To be easily verified $\left[R^{\prime}+R^{\prime} t \mid R^{\prime}\right]_{\tau}=2\left[R^{\prime}\right]$ and $R^{\prime}+R^{\prime} t=R^{\prime} \oplus R^{\prime} t=R$. For, if $R^{\prime} \frown R^{\prime} t \neq 0$, then as $R^{\prime} \frown R^{\prime} t$ is a two-sided R^{\prime}-module contained in R^{\prime} and $R^{\prime} t$, it has to coincide with $R^{\prime} t$ as well as R^{\prime}. But this is a contradiction. Thus we obtain $t^{2}=a_{1} t+a_{2}$ for some a_{i} in R^{\prime}. Since t and t^{2} are in Z, this gives $\left(a a_{1}\right) t+a a_{2}=\left(a_{1} a\right) t+a_{2} a$ for each a in R^{\prime}. Hence $a a_{i}=a_{i} a$ and so that a_{i} are in Z^{\prime}. Since $R=R^{\prime}+R^{\prime} t$ where t belongs to Z, it is clear that $Z^{\prime}=R^{\prime} \cap Z$. Hence a_{i} are in Z. We may replace t by $u=t-\frac{1}{2} a_{1}$ and obtain $u^{2}=c \in Z$ and $R=R^{\prime} \oplus R^{\prime} u$. For $p, q \in R^{\prime}$, the mapping $p+q u \rightarrow p-q u$ is an automorphism of R whose set of invariants is R^{\prime}. Moreover, there holds that $V\left(R^{\prime}\right)$ $=V\left(R^{\prime} Z\right)=V(R)=Z$. Hence R is Galois over R^{\prime}.

Remark. In part II of the above proof, it is easily seen that R is the Kronecker product over Z^{\prime} of R^{\prime} and a quadratic extension of Z^{\prime}.

References

[1] A. S. Amitsur and J. Levitzki: Minimal identities for algebras, Proc. Amer. Math. Soc., 1, 449-463 (1950).
[2] N. Jacobson: A note on two dimensional division ring extensions, Amer. J. Math., 77, 593-599 (1955).
[3] I. Kaplansky: Rings with a polynomial identity, Bull. Amer. Math. Soc., 54, 575-580 (1948).
[4] T. Nakayama: Galois theory of simple rings, Trans. Amer. Math. Soc., 73, 276-292 (1952).

