1. Evans's Theorem on Abstract Riemann Surfaces with Null-Boundaries. I

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

G. C. Evans¹) proved the following

Evans's theorem. Let F be a closed set of capacity zero in the 3-dimensional euclidean space (or z-plane). Then there exists a positive unit-mass-distribution on F such that the potential engendered by this distribution has limit ∞ at every point of F.

Let R^* be a null-boundary Riemann surface and let $\{R_n\}$ $(n=0, 1, 2, \dots)$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$. Put $R=R^*-R_0$. After R. S. Martin,²⁾ we introduce ideal boundary points as follows. Let $\{p_i\}$ be a sequence of points of R tending to the ideal boundary of R and let $\{G(z, p_i)\}$ be Green's function of Rwith pole at p_i . Let $\{G(z, p_{ij})\}$ be a subsequence of $\{G(z, p_i)\}$ which converges to a function G(z, p) uniformly in R. We say that $\{p_{ij}\}$ determines a Martin's point p and we make G(z, p) correspond to p. Furthermore Martin defined the distance between two points p_1 and p_2 of R or of the boundary by

$$\delta(p_1,\,p_2)\!=\!\sup_{z\in R_1-R_0}\!\left|rac{G(z,\,p_1)}{1\!+\!G(z,\,p_1)}\!-\!rac{G(z,\,p_2)}{1\!+\!G(z,\,p_2)}
ight|\,.$$

It is clear that Martin's point p coincides with an ordinary point when $p \in R$ and that if $p_i \stackrel{\mathfrak{M}}{\rightarrow} p, \stackrel{\mathfrak{I}}{}^{\mathfrak{I}} G(z, p_i) \rightarrow G(z, p)$ uniformly in R. In the following, we denote by $\overline{R}^{(4)}$ the sum of R and the set B of all ideal boundary points of Martin. Let p be a point of \overline{R} and let $V_m(p)$ be the domain of R such that $\varepsilon[G(z, p) \ge m]$. Then

Lemma 1.
$$\int_{\substack{\partial V_m(p) \\ \mathfrak{M} \\ \mathfrak{M} \\ \mathfrak{M}}} \int \frac{\partial G(z, p)}{\partial n} ds = 2\pi : 5^{5} \qquad m \ge 0.$$

Proof. Let $p = \lim_{i} p_i$: $p \in B$, $p_i \in R$. Then $D_{R-V_m(p_i)} [G(z, p_i)] = 2\pi m$

and

¹⁾ G. C. Evans: Potential and positively infinite singularities of harmonic functions, Monatschefte Math. U. Phys., **43** (1936).

²⁾ R. S. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941).

³⁾ In this paper m means "with respect to Martin's metric".

⁴⁾ The topology induced by this metric restricted in R is homeomorphic to the original topology and it is clear that B and \overline{R} are closed and compact.

⁵⁾ In this article, we denote by ∂A the relative boundary of A.

Z. KURAMOCHI

$$\begin{split} & \underbrace{D}_{R-V_m(p)}[G(z,p)] \leq \underbrace{\lim_{i} D}_{R-V_m(p_i)}[G(z,p_i)] = 2\pi m. \\ \text{Let } \omega_n(z) \text{ be a harmonic function in } R-R_0 \text{ such that } \omega_n(z) = 0 \text{ on } \partial R_0, \\ & \omega_n(z) = M_n \text{ on } \partial R_n \text{ and } \int_{\partial R_0} \frac{\partial \omega_n}{\partial n} ds = 2\pi. \\ \text{Then since } R \text{ is a null-boundary} \\ \text{Riemann surface, } \underbrace{\lim_{n} M_n = \infty}_{n} \text{ Put } z_n = e^{\omega_n + ih_n} = r_n e^{i\theta_n}, \text{ where } h_n(z) \text{ is } \\ \text{the conjugate of } \omega_n(z). \\ \text{Denote the curve on which } |z_n| = r \text{ by } \theta_n^r \\ \text{ and the part of } \theta_n^r, \text{ contained in } R - V_m(p) \text{ by } \overline{\theta_n^r}. \\ \text{Then } \int_{\overline{\rho}^r} d\theta_n \leq 2\pi. \end{split}$$

Put
$$L(r_n) = \int_{\overline{\theta}_n^r} \left| \frac{\partial G(z, p)}{\partial r_n} \right| r_n d\theta_n$$
. Then
 $L^2(r_n) \leq 2\pi r_n \int \left| \frac{\partial G(z, p)}{\partial r_n} \right|^2 r_n d\theta_n$,

$$\begin{split} & D_{R_n - V_m(p)} [G(z, p)] = \int \int \left\{ \left(\frac{\partial G}{\partial r_n} \right)^2 + \frac{1}{r_n^2} \left(\frac{\partial G}{\partial \theta_n} \right)^2 \right\} r_n \, dr_n \, d\theta_n. \quad \text{Hence} \\ & \int_{1}^{e^{M_n}} \frac{L^2(r_n)}{2\pi r_n} \, dr_n \leq \int_{1}^{e^{M_n}} \frac{dD}{dr_n} \, dr_n \leq 2\pi m, \text{ for every } n. \quad \text{Therefore} \end{split}$$

there exists a sequence $\{L(r_n^i)\}$: i=i(n) such that $L(r_n^i) \to 0$, when $n \to \infty$. $\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} ds = \int_{\overline{\mathfrak{g}}_n^r} \frac{\partial G(z, p)}{\partial n} ds + \int_{\partial \overline{\mathcal{F}}_m(p)} \frac{G(z, p)}{\partial n} ds, \quad \frac{\partial G(z, p)}{\partial n} \ge 0$

on $\partial V_m(p)$; where $\overline{V}_m(p)$ is the part of $V_m(p)$ out of θ_n^r . Hence we have the lemma. When $p \in R$, our assertion is obvious.

Lemma 2. Let $v_n(p)$ be an m-neighbourhood such that $v_n(p) = \varepsilon \left[\delta(\bar{z}, p) \\ \frac{\bar{z} \in \bar{x}}{\bar{z}} \right]$. Then for every $V_m(p)$, there exists a neighbourhood $v_n(p)$ such

$$v_n(p) \subset V_m(p).$$

Proof. Assume that the lemma is false, there exists a sequence $\{q_i\}$ such that $\lim_{i} q_i = q^*$: $q_i \notin V_m(p)$ and $\delta(q^*, p) = 0$. Let $\{G(z, q_i)\}$ be the corresponding functions to $\{q_i\}$. Take an ordinary neighbourhood $\mathfrak{V}(p)^{\mathfrak{G}}$ of p with a compact relative boundary such that

$$\int_{\partial V_l(p)\cap C\mathfrak{B}(p)} \frac{G(z,p)}{\partial n} ds \ge \pi; \quad l \ge 7m.$$

Since $q_t \notin V_m(p)$ and by the manner in Lemma 1 and by Green's formula, we have

$$m \ge G(q_i, p) = rac{1}{2\pi} \int\limits_{\partial V_l(p)} G(z, q_i) rac{\partial G(z, p)}{\partial n} ds.$$

⁶⁾ $\mathfrak{B}(p)$ is such that $\mathfrak{B}(p) \supseteq R$ and $\mathfrak{B}(p) \cap R_{n_0} = 0$ for a certain n_0 , we can choose as $\mathfrak{B}(p)$ one of component of $R - R_{n_0}$ containing p.

No. 1] Evans's Theorem on Abstract Riemann Surfaces with Null-Boundaries. I 3

accordingly there exist points $\{r_i\}$ on $\partial V_i(p) \cap C\mathfrak{B}(p)$ such that $G(r_i,$ $q_i \leq 2m$, whence $G(r, q^*) \leq 2m$: (r is one of limiting points of r_i) $(\in \partial V_l \cap C^{\mathfrak{Y}})$. Since G(r, p) = l, this fact means that $\delta(q^*, p) > \delta(\delta > 0)$. Hence we have the lemma.

In the following, if G(z, p) has a limit when $z \rightarrow q \in B$, we define the value of G(z, p) at q by the above limit denoted by G(q, p).

Lemma 3. If at least one of p and q is contained in R,

G(p,q) = G(q, p).

Assume $B \ni p$ $(p = \lim p_i: p_i \in R)$ and $q \in R$. Let $\mathfrak{V}(p)$ be an ordinary neighbourhood of p with a compact relative boundary such that $\mathfrak{V}(p) \supset V_m(p)$ and $\mathfrak{V}(p) \geqslant q$. Then we have by Green's formula

$$\int_{\partial \mathfrak{Y}(p)} G(z, p_i) \frac{\partial G(z, q)}{\partial n} ds - \int_{\partial \mathfrak{Y}(p)} G(z, q) \frac{\partial G(z, p_i)}{\partial n} ds = G(p_i, q).$$

Since $p_i \xrightarrow{\mathfrak{M}} p$, $G(z, p_i) \rightarrow G(z, p)$ and $\frac{\partial G(z, p_i)}{\partial n} ds \rightarrow \frac{\partial G(z, p)}{\partial n} ds$ uniformly

on $\partial \mathfrak{B}(p)$, each term of the left hand has its limit when $p_i \rightarrow p$, hence $G(p_i, q)$ has a limit G(p, q). On the other hand $G(p_i, q) = G(q, p_i)$ and $G(q, p) = \lim_{i} G(q, p_i)$, hence G(z, q) is m-continuous in \overline{R} and G(p, q)=G(q, p). G(p, q) can be defined by another way as follows.

In the sequel, we suppose that both p and q lie on B and consider G(z,q) in the neighbourhood of p. Let $V_m(p) = \varepsilon[G(z,p) \ge m], V_n(q)$ $= \mathop{\varepsilon}_{z} [G(z,q) \ge n] \text{ and put} \\ \widetilde{G}^{M}(z,q) = \min [M, G(z,q)]. \text{ Then } D_{R} [\widetilde{G}^{M}(z,q)] \le 2\pi M.$

Let $G_{V_m}^M(z,q)$ be the lower envelope of non negative continuous superharmonic functions in $R-R_0$ which are larger than $\widetilde{G}^{M}(z,q)$ in $R-R_0-V_m(p)$. Then $G_{V_m}^M(z,q)$ is harmonic in $V_m(p)$, continuous on $\partial V_m(p) \cap R$ and by Dirichlet principle $D_{V_m}[G_{V_m}^M(z,q)] \leq D_{V_m}[\widetilde{G}^M(z,p)]$ $\leq 2\pi M.$

Hence we can prove, by the same manner used in Lemma 1, that there exists a sequence of compact curves $\{C_t\}$ enclosing B such that $\{C_i\}$ tends to B when $i \to \infty$ and $\lim_{i \to \infty} \int_{C_i \cap (V_m(p) - V_m'(p))} \left| \frac{\partial G(z, p)}{\partial n} \right| ds = 0$ and we can prove that

$$\int_{\partial V_m(p)} G_{V_m}^{M}(z,q) \frac{\partial G(z,p)}{\partial n} ds = \int_{\partial V_m'(p)} G_{V_m}^{M}(z,q) \frac{\partial G(z,p)}{\partial n} ds, \qquad (1)$$

where m' > m, i.e. $V_m(p) \supset V_{m'}(p)$.

Now let $G_{V_m}(z, q)$ be the lower envelope of non negative continuous

Z. KURAMOCHI

superharmonic functions in $R-R_0$ which are larger than G(z,q) in $R-R_0-V_m(p)$. Since $G_{V_m}^{M}(z,q) \uparrow G_{V_m}'(z,q)$ on $V_m(p)$ and the function $G(z)[=G(z,q), \text{ if } z \notin V_m(p), =G_{V_m}'(z,q) \text{ on } V_m(p)]$ is one of superharmonic functions which are larger than G(z,q) in $R-R_0-V_m(p)$, hence $G_{V_m}(z,q) = \lim_{M \to \infty} G_{V_m}^{M}(z,q)$. Thus, let $M \to \infty$. Then by (1)

$$\int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds = \int_{\partial V_m(p)} G_{V_m}(z, q) \frac{\partial G(z, p)}{\partial n} ds$$
$$= \int_{\partial V_m'(p)} G_{V_m}(z, q) \frac{\partial G(z, p)}{\partial n} ds.$$
(2)

Put $G(z,q) - G_{V_m}(z,q) = H(z)$. Then H(z) is positive and vanishes almost everywhere on $\partial V_m(p)$ (with respect to the measure of $\frac{\partial G(z,p)}{\partial n} ds$). Let $H_{V_m}(z)$ be the lower envelope non negative continuous superharmonic functions in $V_m(p)$ which are larger than H(z) in $V_m(p)$

$$-V_{m'}(p)$$
: $m' > m$. Then

$$egin{aligned} G_{{\scriptscriptstyle V}_{m'}}(z,q) &= G_{{\scriptscriptstyle V}_m}(z,q) + H_{{\scriptscriptstyle V}_{m'}}(z). & ext{Hence by (2)} \ G_{{\scriptscriptstyle V}_m}(p,q) &\geqq G_{{\scriptscriptstyle V}_m}(p,q), \ G_{{\scriptscriptstyle V}_m}(p,q) &= rac{1}{2\pi} \int\limits_{\partial {\scriptscriptstyle V}_m(p)} G(z,q) \; rac{\partial G(z,p)}{\partial n} \; ds. \end{aligned}$$

where

We define the value of G(z, q) at p, denoted by G(p, q), by $\lim_{m \to \infty} G_{V_m}(p, q)$.

When $q \in R$, this G(p, q) is the same that is defined before. We shall prove the following

Theorem 1. 1) $G(p, p) = \infty$. 2) G(z, p) is m-lower semicontinuous in \overline{R} .

3) G(z, p) is superharmonic in weak sense.⁷⁾

- 4) G(p, q) = G(q, p).
- 1) is clear by Lemma 2 and 3) is also clear by definition of G(q, p). Proof of 2). Let $p_j \rightarrow p$. Put $G_{V_m}^{\mathcal{M}}(p,q) = \frac{1}{2\pi} \int_{\partial V_m(p)} \widetilde{G}_{\mathcal{M}}^{\mathcal{M}}(z,q) \cdot \frac{\partial G(z,p)}{\partial n} ds$,

then there exists n, for every positive number ε , such that

Since the genus of $R_{n+1}-R_0$ is finite, map $R_{n+1}-R_0$ onto a compact surface on the *w*-plane. $(R_n-R_0)\cap \partial V_m(p)$ is composed of at most a finite number of analytic curves. We make sufficiently narrow strip B in $R_{n+1}-R_0$ such that B contains $\partial V_m(p)\cap R_n$, and ∂B passes end points of $\partial V_m(p)\cap R_n$ orthogonaly. We divide B into a finite number

7) If $U(p) \ge \frac{1}{2\pi} \int_{C} U(z) \frac{\partial G(z, p)}{\partial n} ds$ for only the niveau curve C of the Green's

function with pole at p, we say that U(z) is superharmonic in weak sense.

of narrow strips B_i $(l=1, 2, \dots, k)$ so that ∂B_i intersect $\partial V_m(p)$ with angles $(\neq 0, \pi)$ and we map B_i onto a rectangle: $0 \leq Im \zeta \leq \delta(\delta$ is sufficiently small), $-1 \leq Re \zeta \leq 1$, on the ζ -plane such that any vertical straight line: $Re \zeta = s$: $-1 \leq s \leq 1$ intersects only once $\partial V_m(p_j)$: $j > j_0$. This is possible, since $G(z, p_j) \rightarrow G(z, p)$, and their derivatives converge. We make a point α_j of $\partial V_m(p_j)$ correspond to a point α of $\partial V_m(p)$, where $Re \alpha_j = Re \alpha$. Since $\frac{\partial G(\alpha, p_j)}{\partial n} ds \geq 0$ and uniformly bounded in B_i and since $\frac{G(\alpha_j, p_j)}{\partial n} ds \rightarrow \frac{\partial G(\alpha, p)}{\partial n} ds$ and since $G(\alpha_j, q) \rightarrow G(\alpha, q)$,

we have

$$\begin{split} \lim_{j \to \infty} & \int_{B_l \cap \partial V_m(p_j)} \widetilde{G}^M(\alpha_j, q) \ \frac{\partial G(\alpha_j, p_j)}{\partial n} ds = \int_{B_l \cap \partial V_m(p)} \widetilde{G}^M(\alpha, q) \ \frac{\partial G(\alpha, p)}{\partial n} ds, \\ \text{whence} \quad & \lim_{j \to \infty} \int_{B \cap \partial V_m(p_j)} \widetilde{G}^M(z, q) \ \frac{\partial G(z, p_j)}{\partial n} ds = \int_{B \cap \partial V_m(p)} \widetilde{G}^M(z, q) \ \frac{\partial G(z, p)}{\partial n} ds, \text{ and} \\ & \lim_{j \to \infty} G^M_{V_m(p_j)}(p_j, q) = \lim_{j \to \infty} \int_{\partial V_m(p_j)} \widetilde{G}^M(z, q) \ \frac{\partial G(z, p_j)}{\partial n} ds \ge \lim_{j \to \infty} \int_{\partial V_m(p_j) \cap B} \widetilde{G}^M(z, q) \ \frac{\partial G(z, p_j)}{\partial n} ds \\ &= \int_{\partial V_m(p)} \widetilde{G}^M(z, q) \ \frac{\partial G(z, p)}{\partial n} ds - \varepsilon. \quad \text{Let } \varepsilon \to 0. \quad \text{Then} \\ & \lim_{j \to \infty} G^M_{V_m(p_j)}(p_j, q) \ge G^M_{V_m(p)}(p_j, q). \quad \text{Hence} \\ & G^M_{V_m}(p, q) \text{ is } \infty\text{-lower semicontinuous.} \end{split}$$

If $p_j \in B$, we consider $p_{j_i} \in R$ such that $\lim_{i} p_{j_i} = p_j$.

Since $G_{V_m}^{M}(p,q) \uparrow G_{V_m}(p,q)$ and since $G_{V_m}(p,q) \uparrow G(p,q)$, G(z,q) is also m-lower semicontinuous at p, whence G(z,q) is lower semicontinuous in \overline{R} (not only in R where G(z,q) is continuous).

Proof of 4). Let ξ and η be points of R lying on $\partial V_m(p)$ and $\partial V_n(q)$ respectively. If η is outside of $V_m(p)$,

$$G(p,\eta) = G(\eta, p) = rac{1}{2\pi} \int_c G(z,\eta) rac{\partial G(z,p)}{\partial n} ds.$$

If $\eta \in V_m(p)$,

$$\frac{1}{2\pi}\int_{C} G(z,\eta) \frac{\partial G(z,p)}{\partial n} ds = m \leq G(\eta,p) = G(p,\eta),$$

where $C = \partial V_m(p)$.

Since
$$G_{V_m(p)}(p,q) = \frac{1}{2\pi} \int_c G(\xi,q) \frac{\partial G(\xi,p)}{\partial n} ds$$
, and since $V_n(q) \to B$,

when $n \to \infty$, for any given positive number ε , there exists a niveau curve $C' = V_n(q)$ such that

$$G_{{\scriptscriptstyle V}_m\!\left(p
ight)}\!\left(p,q
ight) \!-\!arepsilon \!\leq \! rac{1}{2\pi}\!\!\int_{\underline{c}}G({arepsilon},q) rac{\partial G({arepsilon},p)}{\partial n}ds,$$

where <u>C</u> is the part of C out of $V_n(q)$. Let ξ be a point on <u>C</u> $\cap R$.

Then $p \notin V_n(q)$, whence

$$\begin{split} G(\xi,q) &= G(q,\,\xi) = \frac{1}{2\pi} \int_{c'}^{c} G(\eta,\,\xi) \frac{\partial G(\eta,\,q)}{\partial n} \, ds. \quad \text{Accordingly we have} \\ G_{\mathcal{V}_{m}(p)}(p,q) - \varepsilon &\leq \frac{1}{4\pi^2} \int_{\underline{c}}^{c} \left(\int_{c'}^{c} G(\eta,\,\xi) \frac{\partial G(\eta,\,q)}{\partial n} \, ds \right) \frac{\partial G(\xi,\,p)}{\partial n} \, ds \\ &= \frac{1}{4\pi^2} \int_{c'}^{c} \left(\int_{\underline{c}}^{c} G(\xi,\,\eta) \frac{\partial G(\xi,\,p)}{\partial n} \, ds \right) \frac{\partial G(\eta,\,q)}{\partial n} \, ds. \end{split}$$

$$\begin{split} &\text{If } \eta \notin V_m(p) \\ &\frac{1}{2\pi} \int_{\underline{c}} G(\xi,\eta) \frac{\partial G(\xi,p)}{\partial n} ds \leq \frac{1}{2\pi} \int_{c} G(\xi,\eta) \frac{\partial G(\xi,p)}{\partial n} ds \leq G(\eta,p) = G(p,\eta). \\ &\text{If } \eta \in V_m(p) \\ &\frac{1}{2\pi} \int_{\underline{c}} G(\xi,\eta) \frac{\partial G(\xi,p)}{\partial n} ds \leq \frac{1}{2\pi} \int_{c} G(\xi,\eta) \frac{\partial G(\xi,p)}{\partial n} ds \leq G(p,\eta) = G(\eta,p). \\ &\text{On the other hand } G_{V_n(q)}(q,p) = \frac{1}{2\pi} \int_{c'} G(\eta,p) \frac{\partial G(\eta,q)}{\partial n} ds. \quad \text{Hence} \\ &G_{V_m(p)}(p,q) - \varepsilon \leq \frac{1}{4\pi^2} \int_{c} \left(\int_{c} G(\xi,\eta) \frac{\partial G(\xi,p)}{\partial r} ds \right) \frac{\partial G(\eta,q)}{\partial r} ds \end{split}$$

Since the inverse inequality holds for the other $V_{m'}(p)$ and $V_{n'}(q)$ and since $G_{V_m(p)}(p,q) \uparrow G(p,q)$ and $G_{V_m(q)}(q,p) \uparrow G(q,p)$, we have 4).