1. Evans's Theorem on Abstract Riemann Surfaces with Null-Boundaries. I

By Zenjiro Kuramochi
Mathematical Institute, Osaka University
(Comm. by K. Kunugi, M.J.A., Jan. 12, 1956)

G. C. Evans ${ }^{1)}$ proved the following

Evans's theorem. Let F be a closed set of capacity zero in the 3-dimensional euclidean space (or z-plane). Then there exists a positive unit-mass-distribution on F such that the potential engendered by this distribution has limit ∞ at every point of F.

Let R^{*} be a null-boundary Riemann surface and let $\left\{R_{n}\right\}$ ($n=0$, $1,2, \cdots)$ be its exhaustion with compact relative boundaries $\left\{\partial R_{n}\right\}$. Put $R=R^{*}-R_{0}$. After R. S. Martin, ${ }^{2)}$ we introduce ideal boundary points as follows. Let $\left\{p_{i}\right\}$ be a sequence of points of R tending to the ideal boundary of R and let $\left\{G\left(z, p_{i}\right)\right\}$ be Green's function of R with pole at p_{i}. Let $\left\{G\left(z, p_{i_{j}}\right)\right\}$ be a subsequence of $\left\{G\left(z, p_{i}\right)\right\}$ which converges to a function $G(z, p)$ uniformly in R. We say that $\left\{p_{i_{j}}\right\}$ determines a Martin's point p and we make $G(z, p)$ correspond to p. Furthermore Martin defined the distance between two points p_{1} and p_{2} of R or of the boundary by

$$
\delta\left(p_{1}, p_{2}\right)=\sup _{z \in R_{1}-R_{0}}\left|\frac{G\left(z, p_{1}\right)}{1+G\left(z, p_{1}\right)}-\frac{G\left(z, p_{2}\right)}{1+G\left(z, p_{2}\right)}\right| .
$$

It is clear that Martin's point p coincides with an ordinary point when $p \in R$ and that if $p_{i} \xrightarrow{\mathfrak{M}_{P}} p,{ }^{3 〕} G\left(z, p_{i}\right) \rightarrow G(z, p)$ uniformly in R. In the following, we denote by $\bar{R}^{4)}$ the sum of R and the set B of all ideal boundary points of Martin. Let p be a point of \bar{R} and let $V_{m}(p)$ be the domain of R such that $\varepsilon[G(z, p) \geqq m]$. Then

Lemma 1.

$$
\int_{\partial V_{m}(p)} \frac{\partial G(z, p)}{\partial n} d s=2 \pi:^{5)} \quad m \geqq 0 .
$$

Proof. Let $p=\lim _{i} p_{i}: p \in B, p_{i} \in R$. Then $\underset{R-V_{m}\left(p_{i}\right)}{D}\left[G\left(z, p_{i}\right)\right]=\mathbf{2 \pi m}$ and

[^0]$$
\underset{R-V_{m}(p)}{D}[G(z, p)] \leqq \lim _{i} \underset{R-V_{m}\left(p_{t}\right)}{D}\left[G\left(z, p_{t}\right)\right]=2 \pi m .
$$

Let $\omega_{n}(z)$ be a harmonic function in $R-R_{0}$ such that $\omega_{n}(z)=0$ on ∂R_{0}, $\omega_{n}(z)=M_{n}$ on ∂R_{n} and $\int_{\partial R_{0}} \frac{\partial \omega_{n}}{\partial n} d s=2 \pi$. Then since R is a null-boundary Riemann surface, $\lim _{n} M_{n}=\infty$. Put $z_{n}=e^{\omega_{n}+t h_{n}}=r_{n} e^{i \theta_{n}}$, where $h_{n}(z)$ is the conjugate of $\omega_{n}(z)$. Denote the curve on which $\left|z_{n}\right|=r$ by θ_{n}^{r} and the part of θ_{n}^{r}, contained in $R-V_{m}(p)$ by $\bar{\theta}_{n}^{r}$. Then $\int_{\bar{\sigma}_{n}^{r}} d \theta_{n} \leqq 2 \pi$.

Put $L\left(r_{n}\right)=\int_{\vec{\theta}_{n}^{r}}\left|\frac{\partial G(z, p)}{\partial r_{n}}\right| r_{n} d \theta_{n}$. Then

$$
L^{2}\left(r_{n}\right) \leqq 2 \pi r_{n} \int_{\overline{\mathrm{\theta}}_{n}^{r}}\left|\frac{\partial G(z, p)}{\partial r_{n}}\right|^{2} r_{n} d \theta_{n},
$$

$$
\begin{aligned}
& \underset{{ }_{R_{n}-}-V_{m}(p)}{D}[G(z, p)]=\iint\left\{\left(\frac{\partial G}{\partial r_{n}}\right)^{2}+\frac{1}{r_{n}^{2}}\left(\frac{\partial G}{\partial \theta_{n}}\right)^{2}\right\} r_{n} d r_{n} d \theta_{n} . \text { Hence } \\
& \int_{1}^{e^{M_{n}}} \frac{L^{2}\left(r_{n}\right)}{2 \pi r_{n}} d r_{n} \leqq \int_{1}^{e^{e M_{n}}} \frac{d D}{d r_{n}} d r_{n} \leqq 2 \pi m, \text { for every } n . \text { Therefore }
\end{aligned}
$$ there exists a sequence $\left\{L\left(r_{n}^{i}\right)\right\}$: $i=i(n)$ such that $L\left(r_{n}^{i}\right) \rightarrow 0$, when $n \rightarrow \infty$. $\int_{\partial \mathbb{R}_{0}} \frac{\partial G(z, p)}{\partial n} d s=\int_{\vec{\theta}_{n}^{r}} \frac{\partial G(z, p)}{\partial n} d s+\int_{\partial \vec{V}_{m}(p)} \frac{G(z, p)}{\partial n} d s, \frac{\partial G(z, p)}{\partial n} \geqq 0$ on $\partial V_{m}(p)$; where $\bar{V}_{m}(p)$ is the part of $V_{m}(p)$ out of θ_{n}^{r}. Hence we have the lemma. When $p \in R$, our assertion is obvious.

Lemma 2. Let $v_{n}(p)$ be an m-neighbourhood such that $v_{n}(p)=\underset{\bar{z} \in \bar{n}}{\varepsilon} \delta(\bar{z}, p)$ $\left.<\frac{1}{n}\right]$. Then for every $V_{m}(p)$, there exists a neighbourhood $v_{n}(p)$ such that

$$
v_{n}(p) \subset V_{m}(p) .
$$

Proof. Assume that the lemma is false, there exists a sequence $\left\{q_{i}\right\}$ such that $\lim _{i i} q_{i}=q^{*}: q_{i} \notin V_{m}(p)$ and $\delta\left(q^{*}, p\right)=0$. Let $\left\{G\left(z, q_{i}\right)\right\}$ be the corresponding functions to $\left\{q_{i}\right\}$. Take an ordinary neighbourhood $\mathfrak{B}(p)^{6)}$ of p with a compact relative boundary such that

$$
\int_{\partial V_{l}(p) \cap C \mathfrak{P}(p)} \frac{G(z, p)}{\partial n} d s \geqq \pi: \quad l \geqq 7 m .
$$

Since $q_{t} \notin V_{m}(p)$ and by the manner in Lemma 1 and by Green's formula, we have

$$
m \geqq G\left(q_{i}, p\right)=\frac{1}{2 \pi} \int_{\partial V_{l}(p)} G\left(z, q_{i}\right) \frac{\partial G(z, p)}{\partial n} d s
$$

[^1]Therefore $\quad 1 \quad 2 \pi \int_{\partial V_{l}(p) \cap C B(p)} G\left(z, q_{i}\right) \frac{\partial G(z, p)}{\partial n} \leqq m$,
accordingly there exist points $\left\{r_{i}\right\}$ on $\partial V_{l}(p) \cap C \mathfrak{B}(p)$ such that $G\left(r_{i}\right.$, $\left.q_{i}\right) \leqq 2 m$, whence $G\left(r, q^{*}\right) \leqq 2 m$: (r is one of limiting points of r_{i}) ($\left.\epsilon \partial V_{\imath} \cap C \mathfrak{B}\right)$. Since $G(r, p)=l$, this fact means that $\delta\left(q^{*}, p\right)>\delta(\delta>0)$. Hence we have the lemma.

In the following, if $G(z, p)$ has a limit when $z \rightarrow q(\in B)$, we define the value of $G(z, p)$ at q by the above limit denoted by $G(q, p)$.

Lemma 3. If at least one of p and q is contained in R,

$$
G(p, q)=G(q, p)
$$

Assume $B \ni p\left(p=\lim _{i} p_{i}: p_{i} \in R\right)$ and $q \in R$. Let $\mathfrak{B}(p)$ be an ordinary neighbourhood of p with a compact relative boundary such that $\mathfrak{B}(p) \supset V_{m}(p)$ and $\mathfrak{B}(p) \nsubseteq q$. Then we have by Green's formula

$$
\int_{\partial \mathfrak{O}(p)} G\left(z, p_{i}\right) \frac{\partial G(z, q)}{\partial n} d s-\int_{\partial \mathscr{E}(p)} G(z, q) \frac{\partial G\left(z, p_{i}\right)}{\partial n} d s=G\left(p_{i}, q\right)
$$

Since $p_{i} \rightarrow p, G\left(z, p_{i}\right) \rightarrow G(z, p)$ and $\frac{\partial G\left(z, p_{i}\right)}{\partial n} d s \rightarrow \frac{\partial G(z, p)}{\partial n} d s$ uniformly on $\partial \mathfrak{B}(p)$, each term of the left hand has its limit when $p_{i} \rightarrow p$, hence $G\left(p_{i}, q\right)$ has a limit $G(p, q)$. On the other hand $G\left(p_{i}, q\right)=G\left(q, p_{i}\right)$ and $G(q, p)=\lim _{i} G\left(q, p_{i}\right)$, hence $G(z, q)$ is \mathfrak{r}-continuous in \bar{R} and $G(p, q)$ $=G(q, p) . \quad G(p, q)$ can be defined by another way as follows.

In the sequel, we suppose that both p and q lie on B and consider $G(z, q)$ in the neighbourhood of p. Let $V_{m}(p)=\varepsilon_{z}[G(z, p) \geqq m], V_{n}(q)$ $=\varepsilon_{z}[G(z, q) \geqq n]$ and put

$$
\widetilde{G}^{M}(z, q)=\min [M, G(z, q)] . \quad \text { Then }{ }_{R}\left[\widetilde{G}^{M}(z, q)\right] \leqq 2 \pi M
$$

Let $G_{V_{m}}^{M_{2}}(z, q)$ be the lower envelope of non negative continuous superharmonic functions in $R-R_{0}$ which are larger than $\widetilde{G}^{M}(z, q)$ in $R-R_{0}-V_{m}(p)$. Then $G_{V_{m}}^{M}(z, q)$ is harmonic in $V_{m}(p)$, continuous on $\partial V_{m}(p) \cap R$ and by Dirichlet principle $D_{V_{m}}\left[G_{V_{m}}^{M}(z, q)\right] \leqq D_{V_{m}}\left[\widetilde{G}^{M}(z, p)\right]$ $\leqq 2 \pi M$.

Hence we can prove, by the same manner used in Lemma 1, that there exists a sequence of compact curves $\left\{C_{l}\right\}$ enclosing B such that $\left\{C_{i}\right\}$ tends to B when $i \rightarrow \infty$ and $\lim _{i=\infty} \int_{C_{i \cap}\left(V_{m}(p)-V_{m}(p)\right\rangle}\left|\frac{\partial G(z, p)}{\partial n}\right| d s=0$ and we can prove that

$$
\begin{equation*}
\int_{\partial V_{m}(p)} G_{V_{m}}^{M}(z, q) \frac{\partial G(z, p)}{\partial n} d s=\int_{\partial V_{m}(p)} G_{V_{m}}^{M}(z, q) \frac{\partial G(z, p)}{\partial n} d s \tag{1}
\end{equation*}
$$

where $m^{\prime}>m$, i.e. $V_{m}(p) \supset V_{m^{\prime}}(p)$.
Now let $G_{V_{m}}(z, q)$ be the lower envelope of non negative continuous
superharmonic functions in $R-R_{0}$ which are larger than $G(z, q)$ in $R-R_{0}-V_{m}(p)$. Since $G_{V_{m}}^{\prime \prime}(z, q) \uparrow G_{V_{m}}^{\prime}(z, q)$ on $V_{m}(p)$ and the function $G(z)\left[=G(z, q)\right.$, if $z \notin V_{m}(p),=G_{V_{m}}^{\prime}(z, q)$ on $\left.V_{m}(p)\right]$ is one of superharmonic functions which are larger than $G(z, q)$ in $R-R_{0}-V_{m}(p)$, hence $G_{V_{m}}(z, q)=\lim _{M=-\infty} G_{V_{m}}^{M}(z, q)$. Thus, let $M \rightarrow \infty$. Then by (1)

$$
\begin{gather*}
\int_{\partial r_{m}(z)} G(z, q) \frac{\partial G(z, p)}{\partial n} d s=\int_{\partial r^{\prime}(p)} G_{V_{m}}(z, q) \frac{\partial G(z, p)}{\partial n} d s \\
=\int_{\partial V_{m^{\prime}}(p)} G_{V_{m}}(z, q) \stackrel{\partial G(z, p)}{\partial n} d s . \tag{2}
\end{gather*}
$$

Put $G(z, q)-G_{V_{m}}(z, q)=H(z)$. Then $H(z)$ is positive and vanishes almost everywhere on $\partial V_{m}(p)$ (with respect to the measure of $\left.\frac{\partial G(z, p)}{\partial n} d s\right)$. Let $H_{V_{m}}(z)$ be the lower envelope non negative continuous superharmonic functions in $V_{m}(p)$ which are larger than $H(z)$ in $V_{m}(p)$ $-V_{m^{\prime}}(p): m^{\prime}>m$. Then

$$
\begin{gathered}
G_{V_{m^{\prime}}}(z, q)=G_{V_{m}}(z, q)+H_{V_{m^{\prime}}}(z) \text {. Hence by (2) } \\
G_{V_{m}}(p, q) \geqq G_{V_{m}}(p, q),
\end{gathered}
$$

where

$$
\begin{gathered}
G_{V_{m}}(p, q) \geqq G_{V_{m}}(p, q), \\
G_{V_{m}}(p, q)=\frac{1}{2 \pi} \int_{\partial V_{m}(p)} G(z, q) \partial G(z, p) d s .
\end{gathered}
$$

We define the value of $G(z, q)$ at p, denoted by $G(p, q)$, by $\lim _{m=\infty} G_{V_{m}}(p, q)$.

When $q \in R$, this $G(p, q)$ is the same that is defined before.
We shall prove the following
Theorem 1. 1) $G(p, p)=\infty$.
2) $G(z, p)$ is \mathfrak{m}-lower semicontinuous in \bar{R}.
3) $G(z, p)$ is superharmonic in weak sense. ${ }^{7}$)
4) $G(p, q)=G(q, p)$.

1) is clear by Lemma 2 and 3) is also clear by definition of $G(q, p)$.

Proof of 2). Let $p_{j} \rightarrow p$. Put $G_{V_{m}}^{M}(p, q)=\frac{1}{2 \pi} \int_{\partial V_{m}(p)} \widetilde{G}^{m}(z, q) \frac{\partial G(z, p)}{\partial n} d s$, then there exists n, for every positive number ε, such that

$$
G_{V_{m}}^{M}(p, q) \leqq \frac{1}{2 \pi} \int_{\partial V_{m}(\nu) R_{n}} \widetilde{G}^{m}(z, q) \frac{\partial G(z, p)}{\partial n} d s+\varepsilon .
$$

Since the genus of $R_{n+1}-R_{0}$ is finite, map $R_{n+1}-R_{0}$ onto a compact surface on the w-plane. $\left(R_{n}-R_{0}\right) \cap \partial V_{m}(p)$ is composed of at most a finite number of analytic curves. We make sufficiently narrow strip B in $R_{n+1}-R_{0}$ such that B contains $\partial V_{m}(p) \cap R_{n}$, and ∂B passes end points of $\partial V_{m}(p) \cap R_{n}$ orthogonaly. We divide B into a finite number
7) If $U(p) \geqq \frac{1}{2 \pi} \int_{C} U(z) \frac{\partial G(z, p)}{\partial n} d s$ for only the niveau curve C of the Green's function with pole at p, we say that $U(z)$ is superharmonic in weak sense.
of narrow strips $B_{l}(l=1,2, \cdots, k)$ so that ∂B_{l} intersect $\partial V_{m}(p)$ with angles $(\neq 0, \pi)$ and we map B_{l} onto a rectangle: $0 \leqq \operatorname{Im} \zeta \leqq \delta(\delta$ is sufficiently small), $-1 \leqq R e \zeta \leqq 1$, on the ζ-plane such that any vertical straight line: $R e \zeta=s:-1 \leqq s \leqq 1$ intersects only once $\partial V_{m}\left(p_{j}\right): j>j_{0}$. This is possible, since $G\left(z, p_{j}\right) \rightarrow G(z, p)$, and their derivatives converge. We make a point α_{j} of $\partial V_{m}\left(p_{j}\right)$ correspond to a point α of $\partial V_{m}(p)$, where Re $\alpha_{j}=R e \alpha$. Since $\frac{\partial G\left(\alpha, p_{j}\right)}{\partial n} d s \geqq 0$ and uniformly bounded in B_{l} and since $\frac{G\left(\alpha_{j}, p_{j}\right)}{\partial n} d s \rightarrow \frac{\partial G(\alpha, p)}{\partial n} d s$ and since $G\left(\alpha_{j}, q\right) \rightarrow G(\alpha, q)$, we have

$$
\lim _{j=\infty} \int_{B_{l} \cap \partial V_{m}\left(p_{j}\right)} \widetilde{G}^{M}\left(\alpha_{j}, q\right) \frac{\partial G\left(\alpha_{j}, p_{j}\right)}{\partial n} d s=\int_{B_{l} \cap \partial V_{m}(p)} \widetilde{G}^{M}(\alpha, q) \frac{\partial G(\alpha, p)}{\partial n} d s
$$

whence $\lim _{j=\infty} \int_{B \cap \partial V_{m}\left(p_{j}\right)} \widetilde{G}^{M}(z, q) \frac{\partial G\left(z, p_{j}\right)}{\partial n} d s=\int_{B \cap \partial V_{m}(p)} \widetilde{G}^{M}(z, q) \frac{\partial G(z, p)}{\partial n} d s$, and

$$
\begin{gathered}
\lim _{j=\infty} G_{V_{m}\left(p_{j}\right)}^{M}\left(p_{j}, q\right)=\lim _{j=\infty} \int_{\partial V_{m}\left(p_{j}\right)} \widetilde{G}^{M}(z, q) \frac{\partial G\left(z, p_{j}\right)}{\partial n} d s \geqq \lim _{j=\infty} \int_{\partial V_{m}\left(p_{j} \cap B\right.} \widetilde{G}^{M}(z, q) \frac{\partial G\left(z, p_{j}\right)}{\partial n} d s \\
=\int_{\partial V_{m}(p)} \widetilde{G}^{M}(z, q) \frac{\partial G(z, p)}{\partial n} d s-\varepsilon . \quad \text { Let } \varepsilon \rightarrow 0 \text {. Then } \\
\frac{\lim _{j}^{j}}{J_{V_{m}\left(p_{j}\right)}^{M}\left(p_{j}, q\right) \geqq G_{\left.V_{m}(p)\right)}^{M}\left(p_{j}, q\right) . \text { Hence }} \\
G_{V_{m}}^{M}(p, q) \text { is m-lower semicontinuous. }
\end{gathered}
$$

If $p_{j} \in B$, we consider $p_{j_{i}} \in R$ such that $\lim _{i} p_{j_{i}}=p_{j}$.
Since $G_{V_{m}}^{M}(p, q) \uparrow G_{V_{m}}(p, q)$ and since $G_{V_{m}}(p, q) \uparrow G(p, q), G(z, q)$ is also \mathfrak{R}-lower semicontinuous at p, whence $G(z, q)$ is lower semicontinuous in \bar{R} (not only in R where $G(z, q)$ is continuous).

Proof of 4). Let ξ and η be points of R lying on $\partial V_{m}(p)$ and $\partial V_{n}(q)$ respectively. If η is outside of $V_{m}(p)$,

$$
G(p, \eta)=G(\eta, p)=\frac{1}{2 \pi} \int_{c} G(z, \eta) \frac{\partial G(z, p)}{\partial n} d s .
$$

If $\eta \in V_{m}(p)$,

$$
\frac{1}{2 \pi} \int_{c} G(z, \eta) \frac{\partial G(z, p)}{\partial n} d s=m \leqq G(\eta, p)=G(p, \eta)
$$

where $C=\partial V_{m}(p)$.
Since $G_{V_{n<~}(p)}(p, q)=\frac{1}{2 \pi} \int_{C} G(\xi, q) \frac{\partial G(\xi, p)}{\partial n} d s$, and since $V_{n}(q) \rightarrow B$, when $n \rightarrow \infty$, for any given positive number ε, there exists a niveau curve $C^{\prime}=V_{n}(q)$ such that

$$
G_{V_{m}(p)}(p, q)-\varepsilon \leqq \frac{1}{2 \pi} \int_{\underline{c}} G(\xi, q) \frac{\partial G(\xi, p)}{\partial n} d s,
$$

where \underline{C} is the part of C out of $V_{n}(q)$. Let ξ be a point on $\underline{C} \cap R$.

Then $p \notin V_{n}(q)$, whence

$$
\begin{aligned}
& G(\xi, q)=G(q, \xi)=\frac{1}{2 \pi} \int_{c^{\prime}} G(\eta, \xi) \frac{\partial G(\eta, q)}{\partial n} d s \text {. Accordingly we have } \\
& G_{r_{m}(p)}(p, q)-\varepsilon \leqq \frac{1}{4 \pi^{2}} \int_{\underline{C}}\left(\int_{c^{\prime}} G(\eta, \xi) \frac{\partial G(\eta, q)}{\partial n} d s\right) \frac{\partial G(\xi, p)}{\partial n} d s \\
& =\frac{1}{4 \pi^{2}} \int_{c^{\prime}}\left(\int_{\underline{C}} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} d s\right) \frac{\partial G(\eta, q)}{\partial n} d s . \\
& \text { If } \eta \notin V_{m}(p) \\
& \frac{1}{2 \pi} \int_{\underline{C}} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} d s \leqq \frac{1}{2 \pi} \int_{C} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} d s \leqq G(\eta, p)=G(p, \eta) . \\
& \text { If } \eta \in V_{m}(p) \\
& \frac{1}{2 \pi} \int_{\underline{c}} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} d s \leqq \frac{1}{2 \pi} \int_{C} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} d s \leqq G(p, \eta)=G(\eta, p) .
\end{aligned}
$$

On the other hand $G_{V_{n}(q)}(q, p)=\frac{1}{2 \pi} \int_{c^{\prime}} G(\eta, p) \frac{\partial G(\eta, q)}{\partial n} d s$. Hence

$$
\begin{gathered}
G_{V_{m}(p)}(p, q)-\varepsilon \leqq \frac{1}{4 \pi^{2}} \int_{c^{\prime}}\left(\int_{C} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} d s\right) \frac{\partial G(\eta, q)}{\partial n} d s \\
=\frac{1}{2 \pi} \int_{c^{\prime}} G(\eta, p) \frac{\partial G(\eta, q)}{\partial n} d s=G_{V_{n}(q)}(q, p) .
\end{gathered}
$$

Since the inverse inequality holds for the other $V_{m^{\prime}}(p)$ and $V_{n^{\prime}}(q)$ and since $G_{V_{m}(p)}(p, q) \uparrow G(p, q)$ and $G_{V_{m}(q)}(q, p) \uparrow G(q, p)$, we have 4).

[^0]: 1) G. C. Evans: Potential and positively infinite singularities of harmonic functions, Monatschefte Math. U. Phys., 43 (1936).
 2) R. S. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941).
 3) In this paper \mathfrak{M} means "with respect to Martin's metric".
 4) The topology induced by this metric restricted in R is homeomorphic to the original topology and it is clear that B and \bar{R} are closed and compact.
 5) In this article, we denote by ∂A the relative boundary of A.
[^1]: 6) $\mathfrak{B}(p)$ is such that $\mathfrak{B}(p) \ni R$ and $\mathfrak{B}(p) \cap R_{n_{0}}=0$ for a certain n_{0}, we can choose as $\mathfrak{B}(p)$ one of component of $R-R_{n_{0}}$ containing p.
