39. Notes on Topological Spaces. II. Some Properties of Topological Spaces with Lebesgue Property

By Kiyoshi ISÉKI

Kobe University

(Comm. by K. KUNUGI, M.J.A., March 12, 1956)

In this Note, we suppose that all spaces considered are separated. It is well known that every continuous function on a compact space is uniformly continuous. An elegant and interesting generalisation of it may be found in W. Sierpinski's classic work [4]. We shall prove the following

Theorem 1. Let f(x) and g(x) be, respectively, upper and lower semi-continuous (real valued) functions on a uniform space S with countable Lebesgue property,^{*)} and suppose that $f(x) \leq g(x)$ for all x in S. Then, for any positive ε , there is a surrounding V such that $f(x') < g(x'') + \varepsilon$

for $x', x'' \in V(x)$ of every x in S.

Proof. From $f(x) \leq g(x)$, we have

 $f(x) < g(x) + \varepsilon$

for all x in S. By the assumption of f(x), g(x),

$$O_r = \{x \mid f(x) < r, r < g(x) + \varepsilon\}$$

is open set for every rational r. The family $F = \{O_r \mid r: \text{ rational}\}$ is clearly an open covering of S. On the other hand, since S has countable Lebesgue property, we can find a surrounding V such that each V(x) is contained in some $O_r \in F$. Hence, if $x', x'' \in V(x)$, x', x'' are contained in some $O_r \in F$. Therefore $x', x'' \in V(x)$ implies f(x') < r and $r < g(x) + \varepsilon$, and hence if $x', x'' \in V(x)$, we have

 $f(x') < g(x'') + \varepsilon$.

The proof is complete.

If we take f(x)=g(x) in Theorem 1, we have the following

Corollary 1. If any covering of a uniform space S has countable Lebesgue property, every continuous function on S is uniformly continuous.

Since compact space has Lebesgue property, we have two corollaries.

Corollary 2. Let f(x) and g(x) be, respectively, upper and lower semi-continuous functions on a compact space S, and suppose that $f(x) \leq g(x)$ for all x in S. Then, for any positive ε , there is a surrounding V such that

$$f(x') < g(x'') + \varepsilon$$

*) For terminologies, see K. Iséki [1].

for $x', x'' \in V(x)$.

Corollary 3. Let f(x) and g(x) be, respectively, upper and lower semi-continuous functions on a compact metric space S, and suppose that $f(x) \leq g(x)$ for all x in S. Then, to every number $\varepsilon > 0$, corresponds a number δ such that $\rho(x', x'') < \delta$ implies $f(x') < g(x'') + \varepsilon$.

Corollary 3 is essentially due to W. Sierpiński [4].

Concerning a metric space with the Lebesgue property, we shall give a simple proof of a theorem. A theorem we shall prove is a special case of a theorem by S. Kasahara [2].

A. A. Monteiro and M. M. Peixoto [3] proved the following

Proposition. The following properties of a metric space S are equivalent:

(1) Finite open covering of S has Lebesgue property.

(2) Countable open covering of S has Lebesgue property.

(3) Any open covering of S has Lebesgue property.

(4) Every continuous function on S is uniformly continuous.

(5) Every bounded continuous function on S is uniformly continuous.

We shall prove that, if a metric space S is connected, then each of these properties implies the compactness of S.

Theorem 2. If every continuous function on a connected metric space S is uniformly continuous, then S is compact.

Proof. To prove Theorem 2 it is sufficient to show that S is sequentially compact.

Suppose that S is not sequentially compact. Then there are countable points x_n $(n=1, 2, \cdots)$ having no limit point.

Therefore there are spherical neighbourhoods $S_n = \{x \mid \rho(x_n, x) < \varepsilon_n\}$ such that

1)
$$\overline{S}_m \frown \overline{S}_n = 0 \quad (m \neq n, m, n = 1, 2, \cdots)$$

2) $\varepsilon_n \downarrow 0.$

We shall define a continuous function f(x) on S as follows:

$$f(x) = \begin{cases} n \left\{ 1 - \frac{\rho(x, x_n)}{\varepsilon_n} \right\}, & \text{for } x \in \overline{S}_n, \\ 0, & \text{for } x \in S - \bigcup_{n=1}^{\infty} \overline{S}_n. \end{cases}$$

The function f(x) is clearly continuous.

Since S is connected, every sphere $S' = S(x_n, \varepsilon)$ $(0 < \varepsilon < \varepsilon_n)$ meets S. Hence f(x) on S_n contains all numbers between 0 and n. Therefore there are two points x', x'' such that $\rho(x', x'') < \frac{1}{n}$ implies |f(x') - f(x'')| > n. This shows that f(x) is not uniformly continuous, which contradicts the hypothesis. Hence S is compact. The proof is complete.

172

References

- K. Iséki: On the property of Lebesgue in uniform spaces. I-V, Proc. Japan Acad., 31, 220-221, 270-271, 441-442, 524-525, 618-619 (1955).
- [2] S. Kasahara: On the Lebesgue property in uniform spaces, Math. Japonicae, 3, 127-132 (1955).
- [3] A. A. Monteiro et M. M. Peixoto: Le nombre de Lebesgue et la continuité uniforme, Port. Math., 10, 105-113 (1951).
- [4] W. Sierpiński: Sur une propriété des fonctions semi-continues, Fund. Math., 9, 1-2 (1927).