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38. A Theorem of Dimension Theory

By Jun-iti NAGATA
Department of Mathematics, Osaka City University

(Comm. by K. KUNUGI, M.J.A., March 12, 1956)

Recently a dimension theory or general metric spaces has been
established by M. Kattov and K. Morita. ) The purpose of this
note is to study some necessary and sufficien conditions for n-
dimensionality of general metric spaces. In the present note we
take Che definition o dimension by H. Lebesgue or that by M.
Kattov and K. Morita as the same: dim R=- 1 or R=, dim R n
if and only if 2or any pair of a closed set F and an open set G with
FG here exists an open set U such that FUG, dimB(U)
n-l.)

Definition. For two collections l[, It’ o open sets we denote by
1<1[’ the fact that U U’ for every U e 1[ and or some U’ e W.

Definition. We mean by a disjoint collection a collection l[ of
open sets such that U, U’ ei[ and UU’ imply UU’-.

Theorem 1. In order that dim R n for a metric space R it
is necessary and su.cient that there exist n + 1 sequences 1 1>.
(i-1, 2,..., n+ 1) of disjoint collections such that []i=1, ..-, n+ 1;
re=l, 2,... is an open basis of R.

Proof. If dim R=0,) hen rom M there exists a sequence

(m-1,2,--.) of locally finite coverings consisting of open, closed
sets such that S(p, ) (m-l, 2,...))is a nbd (-neighbourhood) basis
of each point p o R. For - V <} we define - V- V

’ 1t-l ,. Then 1>1[>. isa<r} and 1t=, 1t IIA , A

a sequence of disjoint collections, and [lt]m--1, 2,... is an open
basis of R.

Conversely, if here exists a sequence ltlI>. of disjoint

1) M. Kattov" On the dimension of non-separable spaces. I, Czechoslovak
Mathematical Journal, 2 (77), (1952). K. Morita: Normal families and dimension theory
for metric spaces, Math. Annalen, 128 (1954); A condition for the metrizability of

topological spaces and for n-dimensionality, Science Reports of the Tokyo Kyoiku
Daigaku, Sect. A, S, No. 114 (1955).

2) B(U) denotes the boundary of U. See K. Morita" Normal families and dimen-
sion theory for metric spaces; from now forth we call this paper M.

3) From now forth we assume R@ .
4) In this note we concern ourselves only with open coverings. We call a

locally finite covering if every point of R has some neighbourhood intersecting only
finitely many elements of . S(A,)=[V[Ve, VA@} for AR. Notations
of this paper are chiefly due to J. W. Tukey" Convergence und uniformity in topology
(1940).
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collections such that {1/ m-l, 2,-. is an open basis of R, then for
an arbitrary point p of R and for every U e 11, p e U implies UU’-
(U U’ e lt), and p U for every U e lI implies {S(p, 1) j=l,. .,
m-l; S(p, 1.;)} -p from the fact that { Ira-l, 2,--. is an open
basis of R. Hence each lI is locally finite and consists of open,
closed sets, and hence dimR0 from M.

Now we proceed to n-dimensional cases. Let dim R__<= n, then we
can decompose R into n+ 1 0-dimensional spaces R (i-1,. -, n+ 1)
by the general decomposition theorem due o Kat6tov and Morita, i.e.

n+l

R---’R, dimR=0. Then there exists a sequence 33>... of

disjoint collections of R such that {93] m-l, 2,-.- is an open basis
of R,. As is obvious from Che above discussion for 0-dimensional
cases, we may assume that every covers R. We
a eA} and take the maximal positive number e for each x e V
such hat S(x).R V,. Furthermore, we define e(m, x)--Min

m 2 U-- [S.(x)[x V,,}, II-[UI eA}. Then it is

obvious that lt>l[>. and each l[ is a disjoint collection from
the disjointness of and from the definition of U,,. Next we
take an arbitrary point x of R and a positive number 8. We can

take positive integ’ers m, such that 2__< 8, .__>_= m, x e V S/(x)m
for sme V e 3. Since for these integers x e U S/(x) S(x)
is obvious, we obtain an open basis {li i--1,. -, n + 1; m--l, 2,.
of R.

Conversely, if R admits n + 1 sequences lif >1>. (i-1,.. -,
n+l) such Chat [ltli--1,...,n+l;m-l, 2,...} is an open basis of
R, then we define R--- [x lS(x, ll) (m--l, 2,.--) is a nbd basis of x].
Since lt is a disjoint collection of R and [[tlm--1,2,.-. is an

n+l

open basis of R, dim R-0. Hence we get dim R n from RR.
i=1

Theorem 2. In order that a T. topological space R is a metriz-
able space with dim R:n i is necessnry and sufficient that there
exists a sequeuce + >: of open coverings such that
S(p, ) (m-l, 2,..-)is a nbd basis for each point p of R and such
that each set of + intersects at most n + 1 sets of

Proof. Necessity. If R is a metric space with dim R_<___n, then

R-R for some 0-dimensional spaces R (i-1,.-.,n+1). Let
i=1

lI-- {U]c e A} be an arbitrary locally finite open covering of R,
then there exists a disjoin covering -{VI a. e A} of R such

5) S(x)={y distance (x y)<:e}.
6) ,-- Is(v,
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that V
___

U. Defining V’-[S()/(x)[x e V} for (x) such hat
RS()(x) V, S)(x)U, we get a disjoint collection

n+l

aeA} of R such that <II. Hence ’-- is a locally finite
i=l

covering of R with order of ’n+l and is a refinement of
Hence here exists an open covering "-[V’] e B} of R such
that V’V for ’ [V]eB}. It is obvious that every point
p of R has some nbd intersecting at most n + 1 of sets belonging
to "; we call such a covering to be of local order n+l.

Now let li>I[>.., be a sequence of uniform coverings giving
Che uniform topology of R, then from Che paracompactness) of R
and from the above conclusion we get a refinement of lIx
local order n + 1. Furthermore, we ge a refinement : of lt: such
that :<, each set of : intersects at most n+l sets of and
such that local order of : n+l. By repeating such processes we
obtain a sequence >: >:>: >. of open coverings such that
<lI and such that each set of )2+1 intersects at most n + 1 of
sets belonging to . Since S(p, lt)(m-l, 2,...) is a nbd basis of
p,S(p, )(m-1,2,...) is also a nb5 basis of p, and hence the
necessity is proved.

Suciency. The metrizability of such a space is Obvious from
Urysohn-Alexandroff’s theorem. We divide the proof of n-dimen-
sionality into three parts.

1. If .>: >... is a sequence satisfying the condition of this
theorem, then for each point p of R, S+(p, ,+++) intersects
obviously at most n+ 1 sets of s. Putting 1--+(_+ (ml,
2,. .), we get a sequence lib>it: >lt>H: >. of open coverings
such hat S(p, lI) (m-1, 2,...) is a nbd basis of p e R and such hat
each S+(p, lt,+) intersects at most n + 1 sets of lI.

Let lI,= {UI<-}, then we can prove firstly that there exist
n+l

open sets U such that U U, U U- for @ and such
i=1

that UMe lI+ implies MGU for some U. To prove this we
define U (<r) by induction so that

n+l

1) UU, 2) UU;- for <a, 3) UMelI+ im-
i=1

plies MU for some U, 4) U W2-+= (i-I,..., n+ 1), where
we put S- {p S(p, +) intersects some k sets of U (7 a) (k- 1,
2, ,n+l) and +w;=s:

For a--0 we define U-Uo, U- (i--2,...,n+l). Since S(p,
H+a) intersects at most n + 1 of U (a <.r), U3 Wg+- is obvious,

7) Every fully normal space is paracompact by A. H. Stone" Paracompactness
and product spaces, Bull. Amer. Math. Soc., ;4 (1948).

8) S’(p, )=S(p, ), Sr,+(p, f)-S(Sn(p, ), ).
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and the other three conditions, also, are obviously satisfied.
Let us assume that U are defined ior < a, hen putting V
U and U-U- V W-:+ (i- 1, 2,..., n + 1), we get U sais-

2ying 1)-4). Since the validities o 1), 2), 4) 2or U are clear, we
prove 3) only. If M e lI+ is an arbitrary set contained in U, then
since every sn+(p, [+) intersects at most n+l sets of
MW+ UW+- US2+- rom the definition o S+.
Hence either MW-- (i-1,..., n+ 1) orMW2-+, MW:= or some i such hat 2n-i+3n+l. If the ormer is he
case, henMW--. Since U S W is obvious or every
and since U+ - (<a) rom he assumption of induction, it
holds UU+- or every <a, and hence UV2+-. Thus
we get MV2+I- and consequently MU2+.

I2 Che latter is the case, i.e. y e MW2-:+ , M
2n-i+3n+l, then ye S2-++ or some kO, i.e. S-++(y,
lt,+) intersects some n- i+ 2 + k sets of U (7 ). Since x, y e M
e li+, S-+ ++ (x, lI+) intersects n-.- i + 2 + k + 1 sets of Ur (7 ).
Hence x e S-++W2-+ for every < a, and hence MW2-+.
Since U-W-+- (<a)rom the assumption o induction, we
get MU- (< a) and consequently MV- . Combining his

conclusion with the assumption MW.. 2--+-, we obtain M(V-W2-+)-, i.e. MU-. Thus he condition 3) is valid or
and hence we can define U (i--1,..., n + 1) satisfying 1)-3) or every

2. Since lI,+H+<[UIi-1,...,n+l;a<r}, if we put lt
n+l

-U, lt+)I a< -}, hen lt is an open covering refining

H, and U, U e H and U U imply S(U, l[+)S(U,
From now 2orth let us denote 1[_ by lt (m-l, 2,...)or brevity,
hen S(U, lt+) S(U,+) if U, U e , U U.

For every U

_
(k-l, 2,. -.) we define inductively (U)-
or some natural number j, S(U’

U}, +(U)-[(U’)U’ e (U)} (m--1,2,...). (From now
orth we denote by UU’ the act that S(U’,_+.)U for

U’e lt_+, U e 1t_.) Furthermore, we define S(U)--
(U)}. The principal object of he second part is to prove i) U,
U e

_
and U:U imply S(U)S(U)-, ii) U e

lI_+ 2or some 12 imply S(U)S(U) or S(U)S(U)--.
To prove i) we ake an arbitrary Ve (U). If Ve (U),

then there exists a sequence U-VoVV...
_+ (p-O, 1,..., j). We notice n(p+ 1) =n(p)+ 2 and n(1) 2.
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Since 1[:_,+<,< l[_,+._,, from *he meaning of <- combining with
the above notice we see easily VS(V,II_.+<) S(V_,lt_+,(,,_)
S(V_, lt_+_))...S(V, lt_+,()) U’ for some U’ e
Since U’U@4 from the fact UV, we get V S(U, tt_+).
Therefore S(U) S(U, lI_+). If U, U e 11_ and U @ U, then
since S(U,lt_+)S(U, ltse_+)--, we can conclude S(D)S(U)
=. As is easily seen from the above discussion, it holds [S(U)
U e lIe_} <lt:_, which will be used later.

Next we proceed to the ease of ii). If S(U)S(U)@ for
U" e H_ and U e lt_+, then there exist some V, e (U,), W, e (U)
with VW@ and consequently two sequences U,-- V0V
...V, U= WoW<-W...W, ofV e lI_+<) (j-O, 1,...,p)

(j-0 1 ...,q) respectively. We take j>0and of W lte_++(.
such that 2k-l+n(j).2k-l+l<2k-l+n(j+l); we notice 2k-1
+l+22k-l+n(j+l). Since 2k-l+n(j)-2k-l+l implies S(U)
=S(V)S(U) from i), we assume 2k-l+n(j)<2k-l+l. If
2k- 1 + n(p) < 2k- 1 + l, then since from the discussion of i) there
exists W’ e lI_++ such that W’W and W’U@, we get V,
and hence S(U)S(V)S(U). If j<p, then from the discussion
of i) there exist W’ e tI_++ and V’ e lI_+<++ such that W’ W,I,
W’U@, V’V, V’V+@. Since V-V+, there exists
V" e lt_+(, with V"V+:, V"V@. Therefore

* lIe_+ from the fact 2k 1 + 1 + 2<2k 1 + n(j + 1).V e l[-+nc.i+ +
Since WV

_
W’V’ @ , W’ V’V+ e

lt:,_+ and W’U:_W"U@, V"V_W"V@4. Thus we
conclude V:; U: and consequently S(U:) S(V) S(U).

3. Puttin --: {S([ Ue lt_} we define inductively

=’{SIS,+, S__S’ for every S’ }, +;+.-.,.+. {SIS
SS’ for every S e,+} (j-1,2,...) for a fixed m.

Then _,-- + is a disjoint collection from 2. Since

,++e<,,++, z+- + ++: ,+< Since
k=0 5=1 j=2 j=l

+1

(>lt) covers R and is a refinement of lt:_ from the remark
t=1

at the end of the proof of 2-i). S(p,) is a nb basis for every
i=1

point p of R; hence from it is obvious that {1i-1
n + 1; m--1, 2,. is an open basis of R. Thus we ae n + 1 sequences

>2> (i--1,. ., n+l) of disjoint collections such that
is an open basis of R. Therefore we conclude dimRn from
Theorem 1.


