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38. A Theorem of Dimension Theory

By Jun-iti NAGATA
Department of Mathematics, Osaka City University
(Comm. by K. KUNUGI, M.J.A., March 12, 1956)

Recently a dimension theory for general metric spaces has been
established by M. Katétov and K. Morita.” The purpose of this
note is to study some necessary and sufficient conditions for -
dimensionality of general metric spaces. In the present note we
take the definition of dimension by H. Lebesgue or that by M.
Katétov and K. Morita as the same: dim R=—1 for R=¢, dim BR=n
if and only if for any pair of a closed set F' and an open set G with
FC G there exists an open set U such that FCUC G, dim B(U)
=n-1.7

Definition. For two collections U, I’ of open sets we denote by
U< the fact that US U’ for every U<l and for some U’ e I,

Definition. We mean by a disjoint collection a collection 1l of
open sets such that U, U’ el and U=xU’ imply U ~U =¢.

Theorem 1. In order that dim R<mn for a metric space R it
is necessary and sufficient that there exist n+1 sequences Ui>1Ui>. ..
(1=1,2,---,n+1) of disjoint collections such that {U;]i=1, ---,n+1;
m=1,2,--+} 4s an open basis of R.

Proof. If dim R=0," then from M there exists a sequence %,
(m=1,2,--+) of locally finite coverings consisting of open, closed
sets such that S(p, B,,) (m=1,2,..-)* is a nbd (=neighbourhood) basis
of each point p of B. For B,={V,|a<+} we define B},= {Va—ﬁ: Vil

a<s} and =2, W=11, \ ¥}, U=1,, B,,--- . Then U,>U>.-- is
a sequence of disjoint collections, and {U,]m=1,2,---} is an open
basis of E.

Conversely, if there exists a sequence U, >1l;>-.-. of disjoint

1) M. Katétov: On the dimension of non-separable spaces. I, Czechoslovak
Mathematical Journal, 2 (77), (1952). K. Morita: Normal families and dimensicn theory
for metric spaces, Math. Annalen, 128 (1954); A condition for the metrizability of
topological spaces and for n-dimensionality, Science Reports of the Tokyo Kyoiku
Daigaku, Sect. A, 5, No. 114 (1955).

2) B(U) denotes the boundary of U. See K. Morita: Normal families and dimen-
sion theory for metric spaces; from now forth we call this paper M.

3) From now forth we assume R=¢.

4) 1In this note we concern ourselves only with open coverings. We call 8 a
locally finite covering if every point of R has some neighbourhood intersecting only
finitely many elements of 8. S(A4,B)="'{V|Ve®B, V. Ax¢} for A< R. Notations
of this paper are chiefly due to J. W. Tukey: Convergence and uniformity in topology
(1940).
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collections such that {U,|m=1,2,---} is an open basis of R, then for
an arbitrary point p of R and for every U ¢ Ii,,, p € U implies U~U"=¢
(UxU ell,), and pe U for every U e ll,, implies ~{S(p, 1,)|7=1,---,
m—1; S(p, U;) 3= ¢} =p from the fact that {ll,|m=1,2,---} is an open
basis of K. Hence each l,, is locally finite and consists of open,
closed sets, and hence dim R-==0 from M.

Now we proceed to n-dimensional cases. Let dim R =<7, then we
can decompose K into n+1 0-dimensional spaces K, (1=1,---,n+1)
by the general decomposition theorem due to Katétov and Morita, %.e.

n+1
R="R,, dim R;=0. Then there exists a sequence Li>Li>... of
=1

disjoint collections of R, such that {¥,|m=1,2,---} is an open basis
of R,. As is obvious from the above discussion for 0-dimensional
cases, we may assume that every Ui covers R,. We put ¥Bi,={V_.|
acA} and take the maximal positive number ¢ for each z¢ V,,
such that S(z) ~R,&V,,.» Furthermore, we define e(m,x)-=Min

(;ln’ ;): Uam:v{sa(m,w)(x) l X € an}’ u:n: {Uam[ a € A} . Then it is

obvious that W!>WUi>-... and each U is a disjoint collection from
the disjointness of B!, and from the definition of U,,. Next we
take an arbitrary point xz of R and a positive number 8. We can

2

take positive integers m,! such that —7—%<8, I=m, xeV,ZS,(x)

for some Ve B Since for these integers z e U, S, () & S,(x)

is obvious, we obtain an open basis (U} |2=1,.---,n+1;m=1,2,-..}
of R.

Conversely, if R admits n+1 sequences Wi>1i>... (4==1,.--,
n+1) such that {U%|4==1,---,n+1;m=1,2,---} ig an open basiz of

R, then we define R;=={x|S(x,U,) (m=1,2,---) is a nbd basis of x}.
Since W, is a disjoint collection of R, and {U},|m=1,2,---} is an
n+1
open basis of R;, dim R;-=0. Hence we get dim R <# from K= ""R,.
i=1
Theorem 2. In order that a T. topological space R is a metriz-
able space with dim R=<n it is necessary and sufficient that there
extsts a sequence B, >VF>VB,>BF>-..9 of open coverings such that
S(p, B,) (m==1,2,---)1s a nbd basis for each point p of R and such
that each set of V,,., intersects at most n+1 sets of B,.
Proof. Necessity. If R is a metric space with dim R <n, then

n+1

R—="R, for some O0-dimensional spaces R, (¢+=1,---,n+1). Let
i=1

U={U,|lac A} be an arbitrary locally finite open covering of F,
then there exists a disjoint covering B,={V la e A} of R, such

5) Se(x)={y| distance (x, y)<e}.
6) B*={S(V,B)|VeBl.
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that V, S U,. Defining V,=""{Sumn (@) |2 e V,} for e(x) such that
B, ~ Sir(@) SV, Sew(@) SU,, we get a disjoint collection V)= {V|

ac A} of R such that B;<ll. Hence 23':@234 is a locally finite

i=1

covering of R with order of ¥’<%n-+1 and is a refinement of 1.
Hence there exists an open covering 2¥”={V}|B e B} of R such
that Vy<V{ for ¥'= {(Vi|BeB}. It is obvious that every point
p of R has some mnbd intersecting at most n+1 of sets belonging
to B”; we call such a covering to be of local order <n-+1.

Now let ;>U,>-.- be a sequence of uniform coverings giving
the uniform topology of B, then from the paracompactness™ of R
and from the above conclusion we get a refinement B, of U, of
local order < n+1. Furthermore, we get a refinement B, of U, such
that B <¥,, each set of B, intersects at most n+1 sets of ¥V, and
such that local order of B, <n-+1. By repeating such processes we
obtain a sequence B,>VF >L,>B}¥>... of open coverings such that
B, <, and such that each set of ¥,,., intersects at most n+1 of
sets belonging to ¥,. Since S(p,U,) (m=1,2,---) is a nbd basis of
»,S(p, B,) (m=1,2,---) is also a nbd basis of p, and hence the
necessity is proved.

Sufficiency. The metrizability of such a space is obvious from
Urysohn-Alexandroff’s theorem. We divide the proof of n-dimen-
sionality into three parts.

1. If ¥,>¥F>-... is a sequence satisfying the condition of this
theorem, then for each point p of K, S"**(p, ¥, .114n1s) intersects
obviously at most n+1 sets of 8,,.* Putting W, =9, n_1xnssy (m=1,
2,--+), we get a sequence I, >Uf>U,>U*>... of open coverings
such that S(p,1,) (m=1,2,---) is a nbd basis of p ¢ R and such that
each S”"*(p,W,,,) intersects at most n+1 sets of U,.

Let U,={U,|a<~+}, then we can prove firstly that there exist

n+1
open sets U} such that JUiQ_Ua, U:~Ui=¢ for a8 and such

=1

that U,2 Mel,,, implies M U! for some U.. To prove this we
define U! (e<+) by induction so that

1) CUISU, 2) UiUi=¢ for B<a, 3) U.2Mel,, im-

plies MU for some U}, 4) U~ W) **=¢ (¢=1,---,n+1), where
we put S¥={p|S*p, U,.,) intersects some k sets of U, (y>a)} (k=1,
2,---,n+1) and Wri=8:~Skt1~... 7 Sr+t,

For =0 we define U;=U,, Ui=¢ (t=2,--+,n+1). Since S(p,
U,.,) intersects at most n+1 of U, (a<~), Uf ~ Wi*'=¢ is obvious,

7) Every fully normal space is paracompact by A. H. Stone: Paracompactness
and product spaces, Bull. Amer. Math. Soc., 54 (1948).

8) S'(p, B)=S(p,B), S**'(p, B)=S(S"(p, B), B)-
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and the other three conditions, also, are obviously satisfied.
Let us assume that U/ are defined for B8<a, then putting V:

=~U} and Ui=U,— Vi~ Wr-i*? (§=1,2,---,n+1), we get U satis-
f<a

fying 1)—4). Since the validities of 1), 2), 4) for U! are clear, we
prove 3) only. If Mel,,, is an arbitrary set contained in U,, then
since every S"**(p, l,.,) intersects at most n+1 sets of U, (y=a),
M- Wit U, Wit =U, ~S¥'=¢ from the definition of S;*'.
Hence either M ~Wi=¢ (i=1,---,n+1)or M ~Wr 2, M Wy "3
=¢ for some ¢ such that 2<n—7¢+3<n+1. If the former is the
case, then M ~ W =¢. Since U, S; © W} is obvious for every B<a,
and since Uy ~Wj=¢ (B<a) from the assumption of induction, it
holds U, ~U;*'=¢ for every B<a, and hence U, ~V}"'=¢. Thus
we get M~V **=¢ and consequently MU .

If the latter is the case, t.e. y e MWy 2 ¢, M Writi=4¢,
2=m—i+3=n+1, then ye Sr*2** for some k>0, t.e. S" t*2+¥y,
1,,.,) intersects some n—i+2+k sets of U, (y>a). Since x,ye M
€ Wypyq, STTHFEHERL (g, U,,,,) intersects n—-i+2+k+1 sets of U, (y=a).
Hence x ¢ S¢'****C W=+ for every B<a, and hence M W i+3,
Since U™ AW "*=¢ (B<a) from the assumption of induction, we
get M ~U; '=¢ (B<a) and consequently M ~V: '==¢. Combining this
conclusion with the assumption M~ W7 *3=¢, we obtain M~ (V.

VW;““3):¢, t.e. MU, Thus the condition 8) is valid for «,
and hence we can define U} (¢=1,---,n+1) satisfying 1)-38) for every
a<T.

2. Since Wk,,<W, ., <{Uili=1,---,n+1;a<+}, if we put U
= (U~ S(R—-U, U, | a<r}, then @lufn is an open covering refining

i=1

W, and U, U,ell], and U,=-U, imply S(U;, Wpss) ~SUs, Uyie) = .
From now forth let us denote U,,_; by U, (m=1,2,--.) for brevity,
thel’l S(Ul) u'm+1) ”\S(U?.’ um+1>::¢ if Ul; U2 € u:m Ul ’J“\: U2'

For every Uelj,;, (k=1,2,---) we define inductively S(U)=
S U)=1{U"1U" e Wy_,,,; for some natural number 7, S(U’, Up_;45) ~
U=}, @ H(U)="{SU)IU e&™U)} (m=1,2,---). (From now
forth we denote by U< U’ the fact that S(U’, Uy 1.0) ~U=¢ for
U’ e Wy _y05 Uelly_,.) Furthermore, we define S(U)="{U'|U" ¢ ™~

m=1

&™"U)}. The principal object of the second part is to prove i) U,
U,e Uy, and U, U, imply S(U) ~S(Uy=¢, ii) U, ey, and U, €
Wy_y4; for some =2 imply S(U,) = S(U,) or S(U) ~S(U,)=¢.

To prove i) we take an arbitrary Ve =&™U). If Ve&S(U),
then there exists a sequence U=V <V, < V< - <V,=V of V,¢
Wy iney 0=0,1,--+,75). We notice n(p+1)=n(p)+2 and n(l)>=2.
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Since W _1inepy<Usp-1incm-1, from the meaning of < combining with
the above notice we see easily V; S S(V;, Uy i) & S(Vp, Wor—gangi-n)
T S(Vizzy Ugiing-0) S S S(Viy Uopginey) & U’ for some U’ € Uy yse
Since U’ ~U,==¢ from the fact U,«<V,, we get V;=S(U;, Uyysy)-
Therefore S(U)SS(Uy, Uyoyyy). If U, Uy,e Ui, , and U, U, then
since S(Uy, Wop—141) ~S(Usy Ug—11)=¢, we can conclude S(U,) ~S(U,)
=¢. As is easily seen from the above discussion, it holds {S(U)|
U e Wi} <U_,, which will be used later.
Next we proceed to the case of ii). If S(U,)~S(U,)=¢ for
U, e lWi,_,and U, € W;,_,,,, then there exist some V, e S2(U,), W, e S(U,)
with V,~W,==¢ and consequently two sequences U,=V,<V,<V,
-V, U= W< Wl<_W‘z<—' W, of Vj € ugkAl«l-n(j) (9=0,1,--- »D)
and of W;elli i pimep (7=0,1,--+,q) respectively. We take j=0
such that 2k—1+4+n())<2k—1+1<2k—1+n(j+1); we notice 2k—1
+14+2=2k—1+4+n(j+1). Since 2k—1+4n(j)=2k—1+1 implies S(U,)
=S(V))< S(U,) from i), we assume 2k—1+n(j)<2k—1+(. If
2k—1+n(p)<2k—1+1, then since from the discussion of i) there
exists W’ e ll,, _.,., such that WO W, and W’ ~U,==¢, we get V,<U,,
and hence S(U,) = S(V,)=S(U,). If j<p, then from the discussion
of i) there exist W’ e Uy_y1pey and V'’ € Uy, _jingjenye; Such that WO W,
W' Uy,=c¢, V2V, V'~ V,:1=¢¢. Since V;<7V;,,;, there exists
V" € Uy_gincsan With V7 -V, 3¢, V" ~V;=c¢. Therefore V'V,
SV e W yingeny<Usi-14144 from the fact 2b—1+1+2=<2k—1+n(j+1).
Since W,~V,CW' V'Xx¢, W=V "V, 7 V"'=W"elf_111:,<
Uyye, and W U,CSW"” ~U,5=¢, V'V, SW" ~V;3=¢. Thus we
conclude V,< U, and consequently S(U,) = S(V,)Z S(U).
3. Putting &} = {S(U)|Uelli,_,}, we define inductively ,&) .,
=&, (SIS €&y, SES’ for every S’ € G}, ,Chi1=nShi; T{S|S
€Sl SES’ for every S’ €,Sh.;} (1=1,2,---) for a fixed m.

Then Ti="",&%L,; is a disjoint collection from 2. Since ,,,Sh14;
G=1

J ) 53
~ i 7 4 . o<} ~ i ~~ s i :
< . O@m+1+lc< m@m-!-1+jy zm+1— m+1®m+1+j<j m@m+j< 5 m@mﬂ—‘ 3:m° Since
- J=1 =2 =1

n+1
~ & (>U,,) covers R and is a refinement of 1%,_; from the remark
i=1

at the end of the proof of 2-i). S(p, Tj@fn) is a nbd basis for every
i=1

point p of R; hence from & C ! it is obvious that (i |7i=1,---,
n+1;m=1,2---} is an open basis of R. Thus we get n -+ 1 sequences
>Fl>... (4=1,---,m+1) of disjoint collections such that {T:}
is an open basis of E. Therefore we conclude dim R<n from
Theorem 1.



