37. On Closed Mappings and Dimension

By Kiiti MORITA

Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., March 12, 1956)

1. Introduction. Let X be a normal space. We shall denote by "dim X" the covering dimension of X and by "ind dim X" the inductive dimension of X which is defined by separation of closed sets; dim $X \leq n$ if every finite open covering of X has an open refinement of order $\leq n+1$, and ind dim $X \leq n$ if for any pair of a closed set F and an open set G with $F \subset G$ there exists an open set V such that $F \subset V \subset G$, ind dim $(\overline{V} - V) \leq n-1$, where by definition ind dim X = -1 if and only if X is empty.

In this paper we shall establish the following generalizations of W. Hurewicz's theorems.¹⁾

Theorem 1. Let f be a closed continuous mapping of a normal space X onto a normal space Y such that the inverse image $f^{-1}(y)$ consists of at most k+1 points for each point y of Y. Then we have dim $Y \leq$ ind dim X+k.

Theorem 2. Let f be a closed continuous mapping of a normal space X onto a paracompact T_1 -space Y such that

 $\dim f^{-1}(y) \leq m$

for each point y of Y. Then

dim $X \leq$ ind dim Y + m.

2. Lemmas. Let \mathfrak{G} be an open covering of a space X and A a subset of X. We shall write (\mathfrak{G}) -dim $A \leq n$ if there exists an open covering of a subspace A which has an order $\leq n+1$ and is a refinement of \mathfrak{G} .

Lemma 1. Let X be a normal space. Then we have dim $X \leq n$ if and only if, for any pair of a closed set F and an open set G with $F \subset G$ and for any finite open covering \circledast of X, there exists an open set V such that

 $F \subset V \subset G$, (6)-dim $(\overline{V} - V) \leq n-1$.

This is proved in [4]. From this lemma we get immediately Lemma 2 which is due to N. Vedenisoff.

Lemma 2. If X is a normal space, then we have

 $\dim X \leq \operatorname{ind} \dim X$.

In case A is a closed subset of a normal space X, we shall

1) W. Hurewicz proved these theorems for the case where X and Y are separable metric spaces. Cf. [2], [3]. In [7] we have used Theorem 1 for the case of metric spaces.

write dim $(X, A) \leq n$ if dim $F \leq n$ for every closed set F of X such that $F \subset X - A$. From the proof of [4, Theorem 2.2] we obtain Lemma 3 below, and Lemma 4 is a direct consequence of Lemma 3 and the sum theorem.

Lemma 3. Let A be a closed set of a normal space X and (G a finite open covering of X. If

(
$$\mathfrak{G}$$
)-dim $A \leq n$, dim $(X, A) \leq n$,

then

((6))-dim $X \leq n$.

Lemma 4. If A is a closed set of a normal space X, then dim X= Max (dim A, dim (X, A)). More generally, if $\{A_i\}$ is a countable closed covering of X such that $A_i \subset A_{i+1}$, $i=1, 2, \cdots$, then dim X= Max (dim (A_i, A_{i-1})) where we put $A_0=0$.

Lemma 5. Let X be a normal space and \mathfrak{G} a locally finite open covering of X. Then we have (\mathfrak{G}) -dim $X \leq n$ if and only if there exist n+1 closed (or open) subsets P_i , $i=0, 1, \dots, n$, such that

$$X = \underbrace{\overset{``}{\underset{i=0}{\overset{`'}}}}_{i=0} P_i, \quad (\textcircled{9}) \text{-dim } P_i \leq 0, \ i = 0, 1, \cdots, n.$$

Proof (cf. [4]). Let ((G)-dim $X \leq n$ and $(G = \{G_a \mid a \in Q\})$. Then there exists an open covering $\{U_a\}$ of X with order $\leq n+1$ such that $U_a \subset G_a$ for each α . We take further an open covering $\{V_a\}$ of X such that $\overline{V}_a \subset U_a$ for each α . If we put

$$P_0 = \smile (\stackrel{n}{\underset{i=0}{\frown}} \overline{V}_{a_i}), \quad Q_0 = \smile (\stackrel{n}{\underset{i=0}{\frown}} V_{a_i}),$$

where the sum is taken over all systems of n+1 distinct indices $\alpha_0, \alpha_1, \dots, \alpha_n$ from Ω , then P_0 is closed and

((6))-dim $P_0 \leq 0$, ((6))-dim $(X - Q_0) \leq n - 1$,

since the order of $\{\bigcap_{i=0}^{n} U_{a_i} | \alpha_i \in \mathcal{Q}, i=0,\cdots,n\} \leq 1$ and the order of $\{(X-Q_0) \cap V_a | \alpha \in \mathcal{Q}\} \leq n$. By repeated application of this process we have a decomposition desired in the lemma. It is obvious that for each *i* there exists an open set P_i^* such that $P_i \subset P_i^*$, (G)-dim $P_i^* \leq 0$.

Conversely, if there is such a decomposition, we have clearly ((\emptyset))-dim $X \leq n$.

3. Proof of Theorem 1. We shall prove Theorem 1 by induction on ind dim X=n. The theorem is trivially true in case ind dim X=-1. We shall assume the theorem for ind dim $X \leq n-1$.

Let ind dim X=n. If k=0, we see by Lemma 2 that the theorem holds. We shall prove the theorem for $k=k_0$ assuming it for $k \leq k_0-1$.

For any pair of a closed set F and an open set G of Y with $F \subset G$ we shall prove the existence of an open set V of Y such that

162

On Closed Mappings and Dimension

(1)
$$F \subset V \subset G, \quad \dim(\overline{V} - V) \leq n + k_0 - 1.$$

By the assumption that ind dim X=n, there exists an open set H of X such that $f^{-1}(F) \subset H \subset f^{-1}(G)$, ind dim $(\overline{H}-H) \leq n-1$. Let us put V=Y-f(X-H). Then we have

$$(2) \qquad \qquad \overline{V}-V \subset f(\overline{H})-V, \quad F \subset V \subset G.$$

If we put $K=f(\overline{H})-V$, $K_1=f(\overline{H}-H)-V$, then by the assumption of induction (concerning ind dim X) we have dim $K_1 \leq n-1+k_0$, since ind dim $(\overline{H}-H) \leq n-1$ and the partial mapping $f|(\overline{H}-H) \cap f^{-1}(K_1)$ is closed.

Let M be any closed set of K (and hence of Y) contained in $K-K_1$. If we denote by f_1 the partial mapping of f whose domain is $(X-H) \frown f^{-1}(M)$ and whose range is M, then f_1 is a closed onto mapping such that $f_1^{-1}(y)$ consists of at most k_0 points for each point y of M, since $M \subset K - K_1 \subset f(H) - V \subset f(H) \frown f(X-H)$. Hence by the assumption of induction on k we have dim $M \leq n+k_0-1$, since ind dim $(X-H) \frown f^{-1}(M) \leq ind \dim X \leq n$. Therefore dim $(K, K_1) \leq n+k_0-1$.

We now apply Lemma 4 to our case and we get dim $K \leq n + k_0 - 1$ and hence

$$\dim(\overline{V}-V) \leq n+k_0-1.$$

By (2) and (3) we see that V satisfies the condition (1). By Lemma 1 we have dim $X \leq n+k_0$. This completes our proof.

4. Theorem 3. Under the same assumption as in Theorem 1, if dim $X \leq 1$, we have dim $Y \leq \dim X + k$.

Proof. In case k=0 the theorem holds clearly. Assume that the theorem holds for $k < k_0$; we shall prove the theorem for $k=k_0$. Let F and G be a closed and an open sets of Y such that $F \subset G$ and let \mathfrak{G} be any finite open covering of Y. We put $\mathfrak{H} = \{f^{-1}(U) \mid U \in \mathfrak{G}\}$. Let dim X=1. By Lemma 1 there exists an open set Hof X such that $f^{-1}(F) \subset H \subset f^{-1}(G)$, (\mathfrak{H}) -dim $(\overline{H}-H) \leq 0$. If we put $V=Y-f(X-H), K=f(\overline{H})-V, K_1=f(\overline{H}-H)-V$, we have $F \subset V \subset G$, (\mathfrak{G}) -dim $K_1 \leq k_0$, while dim $(K, K_1) \leq k_0$ by the assumption of induction. Thus we have (\mathfrak{G}) -dim $(\overline{V}-V) \leq k_0$ by Lemma 3; this shows by Lemma 1 that dim $Y \leq k_0+1$.

Remark. In case X is a totally normal space in the sense of C. H. Dowker [1] it can be shown that under the same assumptions as in Theorem 1 we have ind dim $Y \leq \text{ind dim } X + k$.

5. Proof of Theorem 2. We shall carry out our proof by induction on ind dim Y. The theorem is trivially true if ind dim Y = -1. Assume the theorem for ind dim $Y \leq n-1$. Let ind dim Y=n.

163

No. 3]

Let S be any finite open covering of X. By the assumption of the theorem, for each point y of Y there exists an open set H_y of X such that

$$(4) \qquad \qquad (\textcircled{6})-\dim H_y \leq m, \quad f^{-1}(y) \subset H_y.$$

If we put $V_y = Y - f(X - H_y)$, then V_y is an open neighbourhood of y and

$$(5) f^{-1}(y) \subset f^{-1}(V_y) \subset H_y.$$

Since Y is paracompact, there exists a locally finite open covering $\mathfrak{ll} = \{U_{\alpha} \mid \alpha \in \Omega\}$ which is a refinement of $\{V_{y} \mid y \in Y\}$. The space Y is normal as the image of a normal space under a closed continuous mapping. Hence there is a closed covering $\{F_{\alpha} \mid \alpha \in \Omega\}$ of Y such that $F_{\alpha} \subset U_{\alpha}$ for each α .

Since ind dim Y=n, there exists for each α an open set W_{α} such that $F_{\alpha} \subset W_{\alpha}$, $\overline{W}_{\alpha} \subset U_{\alpha}$, ind dim $(\overline{W}_{\alpha} - W_{\alpha}) \leq n-1$.

Assuming that the set \mathcal{Q} of indices consists of all ordinals less than a fixed ordinal α_0 , we put

$$H_1 = W_1; H_{\alpha} = W_{\alpha} - \underset{\beta < \alpha}{\smile} \overline{W}_{\beta}, \alpha > 1.$$

Then we have

 $(6) Y = \smile \{\overline{H}_{\alpha} \mid \alpha \in \Omega\}$

and ind dim $\overline{H}_{a} \cap \overline{H}_{\beta} \leq n-1$ for $\alpha \neq \beta$, since $\overline{H}_{a} \cap \overline{H}_{\beta} \subset \overline{W}_{\beta} - W_{\beta}$ if $\beta < \alpha$.

By the assumption of induction we have

(7)
$$\dim f^{-1}(\overline{H}_a) \frown f^{-1}(\overline{H}_{\beta}) \leq m+n-1, \text{ for } a \neq \beta.$$

On the other hand, for each $\alpha \ \overline{H}_{\alpha} \subset U_{\alpha}$ and each U_{α} is contained in some V_{y} . Therefore we obtain by (4) and (5)

(8) ((9)-dim
$$f^{-1}(H_a) \leq m \leq m+n$$
.

Since $f^{-1}(\overline{H_a}) \subset f^{-1}(U_a)$ and $\{f^{-1}(U_a)\}$ is a locally finite open covering of X, by [5, Theorem 3] we conclude from (7) and (8) that (G)-dim $X \leq m+n$. Therefore we have dim $X \leq m+n$ since G is arbitrary, and hence the theorem holds for any Y with ind dim Y =n. This completes the proof.²

6. Theorem 4. Let f be a closed continuous mapping of a normal space X onto a paracompact T_1 -space Y such that dim $f^{-1}(y) \leq 0$ for each point y of Y. Then dim $X \leq \dim Y$.

²⁾ For the special case where X is an S_{σ} -space (any *CW*-complex is an S_{σ} -space; for the definition, cf. [6]) we can prove the relation dim $X \leq ind \dim^* Y + m$ under the same assumption as in Theorem 2, where ind dim* Y means the inductive dimension of Y in the sense of Menger-Urysohn; this relation is proved also by K. Nagami independently.

Added in proof: He also proved Theorem 2 under a more restrictive assumption; cf. his forthcoming paper.

No. 3]

Proof. Let (9) be any finite open covering of X. Then for each point y of Y there exists an open neighbourhood V_y of y such that

(9) ((9)-dim $f^{-1}(V_{\eta}) \leq 0;$

this is seen as in the proof of Theorem 2 (cf. (5)).

Let \mathfrak{l} be a locally finite open covering of Y which is a refinement of $\{V_y | y \in Y\}$. Let dim Y=n. Then by Lemma 5 there exist n+1 closed sets Q_i , $i=0, 1, \dots, n$ such that

$$Y = \bigcup_{i=0}^{n} Q_i; \quad (\mathfrak{U}) \text{-dim } Q_i \leq 0, \quad i = 0, 1, \cdots, n.$$

Since each set belonging to \mathfrak{ll} is contained in some V_v , it follows from (9) that (\mathfrak{G})-dim $f^{-1}(Q_i) \leq 0$, $i=0, 1, \dots, n$. According to Lemma 5 this shows that (\mathfrak{G})-dim $X \leq n$. Thus we have dim $X \leq n$.

From the above proof we obtain immediately

Lemma 6. Let f be a continuous mapping of a normal space X onto a paracompact normal T_1 -space Y and \mathfrak{G} a locally finite open covering of X. If for every point y of Y there exists a neighbourhood V(y) of y such that (\mathfrak{G})-dim $f^{-1}(V(y)) \leq 0$, then (\mathfrak{G})-dim $X \leq \dim Y$.

References

- C. H. Dowker: Inductive dimension of completely normal spaces, Quart. Jour. Math., 4, 267-281 (1953).
- [2] W. Hurewicz and H. Wallman: Dimension Theory (1941).
- [3] C. Kuratowski: Topologie, II (1950).
- [4] K. Morita: On the dimension of normal spaces I, Jap. Jour. Math., 20, 5-36 (1950).
- [5] K. Morita: On the dimension of product spaces, Amer. Jour. Math., 75, 205-223 (1953).
- [6] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350–362 (1954).
- [7] K. Morita: A condition for the metrizability of topological spaces and for ndimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 5, No. 114, 33– 36 (1955).