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1. Introduction. Let X be a normal space. We shall denote
by "dim X" he covering dimension of X and by "ind dim X"
he inductive dimension of X which is defined by separation of
closed sets; dimXn if every finite open covering of X has an
open refinement of order n + 1, and ind dimXn if for any pair
of a closed set F and an open set G with FG there exists an

open set V such that FVG, ind dim (V- V)n- 1, where by
definition ind dim X---1 if and only if X is empty.

In this paper we shall establish the following generalizations of
W. Hurewicz’s theorems.

Theorem 1. Let f be a closed continuous mapping of a normal
space X onto a normal space Y such that the inverse image f-(y)
consists of at most k+ 1 points ,for each point y of Y. Then we have

dim Y ind dim X+ k.
Theorem 2. Let f be a closed continuous mapping of a normal

space X onto a paracompact T-space Y such that
dim f-X(y) m

for each point y of Y. Then
dim X ind dim Y+ m.

2. Lemmas. Let ( be an open covering of a space X and A
a subset of X. We shall write (()-dim A n if here exists an
open covering of a subspace A which has an order n + 1 and is a
refinement of (5.

Lemma 1. Let X be a normal space. Then we have dimXn

if and only if, for any pair of a closed set F and an open set G
with FG and for any finite open covering ( of X, there exists
an open set V such that

FVG, (()-dim (V- V)n-1.
This is proved in [4]. From this lemma we get immediately

Lemma 2 which is due to N. Vedenisoff.
Lemma 2. If X is a normal space, then we have

dim X ind dim X.
In case A is a closed subset of a normal space X, we shall

1) w. Hurewicz proved these theorems for the case where X and Y are separable
metric spaces. Cf. [2], [3]. In [7] we have used Theorem 1 for the case of metric

spaces.
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write dim (X, A)n if dim Fn 2or every closed set F oi X such
hat FX-A. From he proof o .4, Theorem 2.2 we obtain
Lemma 3 below, and Lemma 4 is a direct consequence of Lemma 3
and the sum heorem.

Lemma . Let A be a closed set of a normal space X and a

finite open covering of X. If
()-dim A n, dim (X, A) n,

then
()-dim X n.

Lemma 4. If A is a closed set of a normal space X, then
dim X=Max (dim A, dim (X, A)). More generally, if [A} is a count-
able closed covering of X such that A A+, i1, 2, then
dim X=Max (dim (A, A_)) where we put Ao=O.

Lemma 5. Let X be a normal space and a locally finite open
covering of X. Then we have ()-dim X n if and only if there
exist n+l closed (or open) subsets P, i-O, 1,..., n, such that

X= 4P, ()-dim P 0, i=0, 1,.--, n.
i=0

Proof (c. E4]). Let ()-dimXn and -{GI2}. Then
there exists an open covering U} of X with order n + 1 such
that UcG for each . We ake further an open covering {V}
of Xsuch that VcU or each G. If we put

where the sum is taken over all systems of n+ 1 distinct indices
a0, a,’", a,, from 9, then P0 is closed and

()-dim Po 0, (()-dim (X- Vo) n- 1,

since the order of [U,la, eg, i-0,...,n}l and the order of
i=0

[(X- Qo) V a e 9 n. By repeated application o this process
we have a decomposition desired in the lemma. It is obvious that
for each i there exists an open set P. such that P, P:, ()-dim
P, 0.

Conversely, if here is sueh a decomposition, we have clearly
(()-dimXn.. Proof of Theorem 1. We shall prove Theorem 1 by indue-
ion on ind dim X=n. The heorem is rivilly rue in ease ind dim
=-1. We shall assume he heorem for inddim

Le inddimX=n. If --0, we see by Lemma 2 ha he heo-
rein holds. We shll prove he heorem for -o assumin i for

For any pair of a closed se and an open se G of Y wih
FG we shall prove h existence of an open s V of Y sueh tha
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(1) FVG, dim(V-V)n+k0-1.
By the assumption that ind dim X:=n, there exists an open set

H of X such that f-i(F) Hf-(G), ind dim (It- H) n- 1. Let
us put V- Y-f(X- H). Then we have

(2) V-Vf(H)- V, FVG.

If we put K=f(H)-V, KI=f(H-H)-V, then by the assumption
of induction (concerning ind dim X) we have dim K n- 1 + k0, since

ind dim(H-H) n- 1 and the partial mapping f[ (H- H)
is closed.

Let M be any closed set of K (and hence o Y) contained in
K-K1. I we denote by fi the partial mapping o f whose domain
is (X-H)-.f-(M) and whose range is M, then .f is a closed onto
mapping such that fi-(y) consists o2 at most k0 points or each
point y of M, since MK-Kf(H)-VCf(H)f(X-H). Hence
by Che assumption of induction on k we have dim Mn+ko-1,
since ind dim (X- H) ,f-(M) ind dim Xn. Therefore dim (K, K)
n+]c0-1.

We now apply Lemma 4 to our case and we get dim K n + k0-1
and hence

3 dim (V- V)n+ko-1.
By (2) and (3) we see that V satisfies the condition (1). By Lemma
1 we have dimXn+ k0. This completes our proof.

4. Theorem 3. Under the same assumption as in Theorem 1,

if dim X 1, we have dim Y dim X+ k.

Proof. In case k-0 the theorem holds clearly. Assume that
the theorem holds for k<ko; we shall prove the theorem for k--ko.
Let F and G be a closed and an open sets o Y such that FG
and let ( be any finite open covering of Y. We put
Ue(}. Let dimX--1. By Lemma 1 there exists an open set H
of X such that f-(F) H,f-(G), (2))-dim (H- H) O. If we put

V= Y-f(X-H), K=f(H)-V, K=f(H-H)-V, we have FVG,
((g)-dim K, < ko, while dim (K, K) < k0 by the assumption of induction.

Thus we have ((sj)-dim (V-V) k0 by Lemma 3; this shows by Lemma
1 that dim Y ko+ 1.

Remark. In ease X is a totally normal space in the sense of
C. H. Dowker [1 it can be shown that under the same assumptions
as in Theorem 1 we have ind dim Y __< ind dim X+ k.

5;. Proof of Theorem 2. We shall carry out our proof by
induction on ind dim Y. The theorem is trivially rue if ind dim Y

1. Assume the theorem for ind dim Y___< n-1. Let ind dim Y=n.
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Let (9 be any finite open covering of X. By the assumption
of the theorem, for each point y of Y there exists an open set
H, of X such that
4 (()-dim H m, f-(y) H,.

If we put V,=Y-f(X-H), then V, is an open neighbourhood
of y and
5 ) f-(y) f-(V)

Since Y is paracompact, there exists a locally finite open cover-
ing li-[U[a eg} which is a refinement o [V,]y e Y}. The space
Y is normal as the image of a normal space under a closed con-
tinuous mapping. Hence there is a closed covering [F] e 9} of
Y such that F

Since inddim Y=n, there exists or each a an open set W
such that F W, W U, ind dim W- W) n- 1.

Assuming that the set 9 of indices consists of all ordinals less
than a fixed ordinal a0, we put

H,- W; It- W- W, >1.

Then we have

(6)
and ind dim H
<.

By the assumption of induction we have

7 ) dim f-(H) f-(.H)
On the other hand, for each a HU and each U is contained
in some . Therefore we obtain by (4) and (5)
8 ) ()-dim f-(H) m m+ n.

Since f-(H)f-(U) and [f-(b:)} is a locally finite open
covering of X, by [5, Theorem 3 we conclude from (7) and (8)
that ()-dim X
is arbitrary, and hence the theorem holds for any Y with ind dim Y
=n. This completes the proof.

6. Theorem 4. Let f be a closed continuous mapping of a
normal space X onto a paracompact T-space Y such that dim f-(y)

0 for each point y of Y. Then dimXdim Y.

2) For the special case where X is an S-space (any CW-complex is an S-space;
for the definition, cf. [6]) we can prove the relation dim Xinddim* Y+m under the
same assumption as in Theorem 2, where ind dim* Y means the inductive dimension
of Y in the sense of Menger-Urysohn; this relation is proved also by K. Nagami
independently.

Added in proof: He also proved Theorem 2 under a more restrictive assumption;
cf. his forthcoming paper.
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Proof. Let ( be any finite open covering of X. Then or
each point y of Y there exists an open neighbourhood V of y such
tha
9 (()-dim f-(V,) 0;

this is seen as in the proof of Theorem 2 (cf. (5)).
Let 1[ be a locally finite open covering of Y which is a refine-

ment o V,ly e Y}. Let dim Y=n. Then by Lemma 5 there exist
n+l closed sets Q, i=0, 1,..., n such that

Y= Q; (lI)-dim Q 0, i-- 0, 1,.. -, n.

Since each set belonging o l[ is contained in some V,, it follows
2rom (9) that (()-dim f-(Q) O, i-O, 1,..., n. According to Lemma
5 this shows that (()-dimXn. Thus we have dimXn.

From the above proof we obtain immediately
Lemrna 6. Let f be a continuous mapping of a normal space X

onto a paracompact normal Tl-space Y and ( a locally finite open
covering of X. If for every point y of Y there exists a neighbourhood
V(y) of y such that ()-dimf-l(V(y))O, then (()-dim Xdim Y.
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