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On the Efficiency of Leontief’s Dynamic
Input.Output System

By Hirofumi UZAWA
(Comm. by Z. SUETUNA, M.J.A., March 12, 1956)

In this paper we shall show that the usual Leontief dynamic input-
output system can be characterized as an intertemporally efficient
path" in a more general economic model.

1. We shall consider a closed economy with n industries. Let
x(g) be the otal output of industry i, x(g) be the flow inputs
of the product of industry i used in the production of x() in he
period [, +1; and let s($) be the total stock of the i-th capital,
s(g) be the stock of the i-th capital being used by industry k at the
point of ime g. Then the generalized Leongief dynamic inpug-ougpug
sysgem for the period [, +1 can be written as follows:

o, + o,
(i,

where a are input coefficients and b are stock coefficients:

a, O, b, O,

(2) .,
a < 1 or at ]east one i.

Then (1) may be rewritten as follows:=
i---F--:qnrtemporal efficiency",-f. Samuelson [4] or Vzawa [6].
2) We denote, for two vectors m, y,

xy, when x,yz (i=l,..., n),
xy, when 0:>y and xy,
00 > y, when o > ya (i=1,..., n).
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x(t)-X(t)[il+s(t+ 1)- s(t),

s(t+ )>=BX(t) At_ 0 "x(t) "x(t)
s(t)_o, s(t+)>=o.

2. A pair (s, s) o2 non-negative vectors s, s is said o be a
pssible pir, if there exist x(t),X(t), S(t), and S(t+l)such that
they satisfy (4) with s(t)=s nd s(t+ 1)-s. I (s, s) is a possible
pair and there is no non-negative vector s for which (s, s) is possible
and s_s, then (s, s) is said to be an efficient pir.

For any possible pair (s, s), there is a possible pair (s, ) so
that :>s and (4) are satisfied with

s s(t), =s(t + 1),
s(t + 1)- s(t) + (-

S(t+ )>=B
"x(t)

X(t) Ak 0 "x(t) k 0
Let

T(s) [s; s-s+(I-A)xO, (B+A-I)x_s}
and E(s) be he set of efficient vectors in T(s). Then (s, s) is
possible for any se T(s), and E(s) coincides with the set of a
vector s for which (s,s) is an efficient pair T(s) is a closed
convex polyhedral set for any non-negative vector s

3. A sequence of vecors (s, s, ., s’) is said to be a possible
sequence, if s*/e T(g) for any t-0,..., h-1. For any non-negative
vector s we shall denote by T’(s) the set of a vector s’*, for
which there are h-1 vectors s..., ,s"- such that (s s-.., s
is a possible sequence. T(s) is a closed convex polyhedral set for
any non-negative vector s and any integer h.

A possible sequence (sO, ..., s) is said to be h-ecient, if s is
efficient in T’(s). A vector g’ is efficient in T(s), if and only if
se T(s) and there is a positive vector p:>0 such that

p. sU= max p. s.
STh(8O)

4. Let T*(s) [s;s e T(s)}. Then T*(s) coincides with Che

3) A vector in a set T is said to be elTicient if x for no x eT.
4) Cf. Arrow-Barankin-Blackwell [1]. p.s stands or the inner product of vectors

p and s.
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set of all vectors s 2or which here is a vector x such that
s =s- (l- A)x O, Bx G s.

Therefore, i2 a sequence (sO, ..., s) is h-efficient, the subsequence
(st, s/) is k-efficient or any 0 t h- 1, 1/ h- t. On the
other hand, a possible sequence (s, s, s) is 2-efficient if and only
if there is a positive vector p0 such that
a ) p. s maximizes p. s subject to s :> 0 and (C- I)s Cs,

( b p. s minimizes p. s subject o s :> 0 and Cs (C- I)s;
where C=B(I-A)-.

5. We shall consider he case where B and (C-I)are non-
singular and C(C-I)- O. In this case, the usual Leontie dynamic
system can be characterized by he intertemporal efficiency.

Theorem 1. Let B and (C-I) be non-singular, and C(C-I)-O.
Then a possible sequence (s, s, s) is 2-ecient, if and only if there
are vectors x and x such that

s s + (I- A)x, (B+A I)x s
( 6 s_s_(i_A)x, Bx=s.

From Chis theorem we can deduce the ollowing

Theorem 2.) Let B and (C-I) be non-singular, C(C-I)-O and
..., s) is h-e2icients B+A-I: [(B+A-I)x; x>0} Then (s s,

if and only if (s, s+, s+) is 2-ejicient for any t--0, 1,...,
6. Suppose he Frobenius root’ g of C be greater than 1.

Then g is also he Frobenius root of (I-A)-B, and there exists a
non-zero vector x such hat

(I- A)-Bx-px, x O.
If we set s (B+A- I)x and s-Bx, then

s-s, s0, s0,

where - >1. Hence we get the existence of the balanced
p-1

rate of growth.)

Theorem 3. If the Frobenius root of C--B(I-A)- is greater
than 1, then there exists a possible sequence (o, ,.. ", ) such that

(7) (t-o, .,
for any integer h, where - >1.

-1
5) Cf. Uzawa V_6J.
6) Cf. Samuelson [4] and Uzawa [6].
7) The Frobenius root p o+/-" a matrix C with non-negative elements is the largest

non-negative characteristic root of C, which has a maximum absolute value among
characteristic roots of C. [_2I-C]- 0, if and only if :>. Cf. Debreu-Herstein [2].

8) Cf. Solow-Samuelson [5].
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In the case where C(C-I)-- >____0, the Frobenius root of C is
greater than 1 and he sequence (0, ,..., ,) in the above theorem
is h-efficient for any integer h. It also becomes the equilibrium
point in the sense of yon Neumann [3.
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