56. On Semi-reducible Measures. II

By Tadashi ISHII

Department of Mathematics, Ehime University, Japan (Comm. by Z. SUETUNA, M.J.A., April 12, 1956)

In this note we show that main results concerning semi-reducibility of Baire (Borel) measures, which have been proved by Marczewski and Sikorski [5] in metric spaces, and by Katětov [4, Theorem 1] and the present author [3, Theorem 4] in paracompact spaces, are valid in completely regular spaces with a complete structure.¹⁾ The case of two-valued measures has already been considered by Shirota [6], though his result is related to Q-spaces of Hewitt [1]. We use the same notations as in the previous paper [3]: $\mathfrak{B}^*(X)=$ all of Baire subsets in a T-space X, C(X, R)=all of real-valued continuous functions on $X, P(f)=\{x|f(x)>0, f \in C(X, R)\}, \mathfrak{P}(X)=\{P(f)|f \in C(X, R)\}.$

All spaces considered are completely regular spaces and all measures considered are finite measures, unless the contrary is explicitly stated.

Lemma 1. If any closed discrete subset in a T_1 -space X has the power of (two-valued) measure $0,^{2}$ then for any (two-valued) Baire measure μ in X, the union of a discrete collection of open subsets $\{G_a \mid G_a \in \mathfrak{P}(X), \mu(G_a)=0\}$ has also μ -measure $0.^{3}$

Since the proof is essentially stated in the previous paper [3, Theorem 4], we do not repeat it here.

Lemma 2. Let $\mathfrak{U} = \{U_a \mid a \in A\}$ be a normal covering of a T-space X. Then there exists a refinement $\mathfrak{V} = \{G_{na} \mid a \in A, n=1, 2, \cdots\}$ of \mathfrak{U} such that $\{G_{na} \mid a \in A\}$ is a discrete collection with $G_{na} \in \mathfrak{P}(X)$ for each n.

Proof. Let $\mathfrak{l} = \{U_{\alpha} \mid \alpha \in A\}$ be a normal covering of X and let $\{\mathfrak{l}_n\}$ be a normal sequence such that $\mathfrak{l}_1 > \mathfrak{l}_2 > \cdots > \mathfrak{l}_n > \cdots$. Then, as Stone [7] has showed, there exists a closed covering $\{F_{n\alpha} \mid \alpha \in A, n=1, 2, \cdots\}$ satisfying the following conditions:

- i) $S(F_{n\alpha}, \mathfrak{U}_{n+3}) \cap S(F_{n\gamma}, \mathfrak{U}_{n+3}) = \phi$ if $\alpha \neq \gamma$,
- ii) $\{F_{n\alpha} \mid \alpha \in A\}$ is a discrete collection for each n,

3) A collection $\{H_{\alpha} \mid a \in A\}$ of subsets of a *T*-space is called discrete if (1) the closures \overline{H}_{α} are mutually disjoint, (2) $\bigcup_{\beta \in B} \overline{H}_{\beta}$ is closed for any subset *B* of *A*.

¹⁾ A measure μ defined on a σ -field \mathfrak{B} containing Baire family in a *T*-space is called semi-reducible if there exists a closed subset Q such that (1) $\mu(G)>0$ holds if G is open, $G \in \mathfrak{B}$, $G \frown Q \neq \phi$, and (2) $\mu(F)=0$ holds if F is closed, $F \in \mathfrak{B}$, $F \frown Q = \phi$.

²⁾ A discrete set is called to have the power of (two-valued) measure 0, if every (two-valued) measure, defined for all subsets and vanishing for all one point, vanishes identically.

$$S(F_{n\alpha},\mathfrak{U}_{n+1}) \subset U$$

Let $\{f_{na}\}$ be continuous functions as follows: $f_{na}(x)=1$ if $x \in F_{na}$, $f_{na}(x)=0$ if $x \notin S(F_{na}, \mathfrak{ll}_{n+4})$, $0 \leq f_{na}(x) \leq 1$ otherwise. Set $G_{na}=\{x \mid f_{na}(x)>0\}$. Then, since $G_{na} \subset S(F_{na}, \mathfrak{ll}_{n+4})$, we have $\overline{G}_{na} \subset S(G_{na}, \mathfrak{ll}_{n+4}) \subset S(S(F_{na}, \mathfrak{ll}_{n+4}), \mathfrak{ll}_{n+4}) \subset S(F_{na}, \mathfrak{ll}_{n+3})$. We shall show that $F=\bigcup_{a\in B}\overline{G}_{na}$ is closed in X for any subset B of A. Suppose that $p \in \overline{F}$. Then every neighborhood N(p) of p meets some $\overline{G}_{na}(\alpha \in B)$ and so meets some $G_{na}(\alpha \in B)$. If N(p) is contained in $S(p, \mathfrak{ll}_{n+4})$, we have $p \in S(G_{na}, \mathfrak{ll}_{n+4}) \subset S(F_{na}, \mathfrak{ll}_{n+3})$. This shows that every neighborhood N(p) of p contained in $S(g_{na}, \mathfrak{ll}_{n+4})$, we have $p \in S$ $(G_{na}, \mathfrak{ll}_{n+4}) \subset S(F_{na}, \mathfrak{ll}_{n+3})$. This shows that every neighborhood N(p) of p contained in $S(G_{na}, \mathfrak{ll}_{n+4})$ meets only one G_{na} . Thus it holds that $p \in \overline{G}_{na}$, i.e., $p \in F$. Hence $\mathfrak{V} = \{G_{na} \mid \alpha \in A, n=1, 2, \cdots\}$ is a refinement of \mathfrak{ll} satisfying the necessary conditions.

Lemma 3. In a space X the following conditions are equivalent: (1) any (two-valued) Baire measure in X which is locally measure 0 has total measure $0, 4^{3}$

(2) any (two-valued) Baire measure in X is semi-reducible.

Proof. $(1) \rightarrow (2)$. Let μ be a (two-valued) Baire measure and let $Q(\mu) = \{p \mid \mu(U_p) > 0 \text{ for any neighborhood } U_p \in \mathfrak{B}^*(X) \text{ bf } p\}^{.5}$ If $Q(\mu) = \phi$, we have $\mu(X) = 0$ by (1) and so μ is obviously semi-reducible. Therefore, we can suppose that $Q(\mu) \neq \phi$. In the case when μ is a two-valued measure the subset $Q(\mu)$ contains only one point, and hence it is trivial that μ is semi-reducible. In general case we show that $\mu(F) = 0$ is valid for any closed subset F such that $F \in \mathfrak{B}^*(X)$ and $F \frown Q(\mu) = \phi$ hold. For this purpose we define a Baire measure ν as follows:

 $\nu(B) = \mu(B \frown F)$ for any Baire subset B of X.

Then, since ν is locally measure 0, we obtain $\nu(X) = \mu(F) = 0$. (2) \rightarrow (1). Let μ be a (two-valued) Baire measure in X which is locally measure 0. Since μ is semi-reducible by the hypothesis, there exists a closed subset Q such that 1) $\mu(G) > 0$ holds if G is open, $G \in \mathfrak{B}^*(X)$, $G \frown Q \neq \phi$, and 2) $\mu(F) = 0$ holds if F is closed, $F \in \mathfrak{B}^*(X)$, $F \frown Q = \phi$. But the closed subset Q must be a null set, for μ is locally measure 0. Hence we obtain $\mu(X) = 0$ by 2).

Lemma 4. If any (two-valued) Baire measure in a space X which is locally measure 0 has total measure 0, then any closed discrete subset in X has the power of (two-valued) measure 0.

Proof. Let ν be a (two-valued) Borel measure in a closed discrete subset $Y = \{p_a\} \subset X$ vanishing at each point p_a . We define a (two-valued) Baire measure μ in X as follows:

iii)

⁴⁾ A Baire measure μ is called locally measure 0, if for any point $p \in X$ there is a neighborhood $U_p \in \mathfrak{B}^*(X)$ of p with $\mu(U_p)=0$.

⁵⁾ The subset $Q(\mu)$ is obviously closed in X.

 $\mu(B) = \nu(B \frown Y)$ for any Baire subset B of X.

Since μ is obviously locally measure 0, we obtain $\mu(X) = \nu(Y) = 0$, which shows that Y has the power of (two-valued) measure 0.

Theorem 1. Let X be a space with a complete structure. Then the following conditions are equivalent:

(1) any closed discrete subset of X has the power of measure 0,

(2) for any Baire measure μ in X, the union of discrete collection of open subsets $\{G_{\alpha} \mid G_{\alpha} \in \mathfrak{P}(X), \mu(G_{\alpha})=0\}$ has also μ -measure 0,

(3) any Baire measure in X which is locally measure 0 has total measure 0,

(4) any Baire measure in X is semi-reducible.

Proof. $(1) \rightarrow (2)$, $(3) \not\geq (4)$ and $(3) \rightarrow (1)$ follow from Lemmas 1, 3 and 4 respectively. Hence we shall prove only $(2) \rightarrow (3)$. Let μ be a Baire measure in X which is locally measure 0, and suppose that $\mu(X) > 0$ holds. On the other hand, let gX be a complete structure of X and let $\{\mathfrak{U}_{\lambda} \mid \lambda \in \Lambda\}$ be the uniformity of gX. Then, by Lemma 2, there exists an open refinement $\mathfrak{B}_{\lambda} = \{H_{n\alpha}^{\lambda} \mid \alpha \in A_{\lambda}, n=1, 2, \cdots\}$ of \mathfrak{ll}_{λ} such that $\{H_{n\alpha}^{\lambda} \mid \alpha \in A_{\lambda}\}$ is a discrete collection with $H_{n\alpha}^{\lambda} \in \mathfrak{P}(X)$ for each n, since \mathfrak{U}_{λ} is a normal covering. Hence by (2) we have $\mu(H_{n\alpha}^{\lambda}) > 0$ for some n and α . Moreover by the transfinite induction, we can show that it is possible to choose an $H_{\lambda} \in \mathfrak{B}_{\lambda}$ for any $\lambda \in \Lambda$ such that $\mu(\bigcap_{i=1}^{\infty}H_{\lambda_i})>0$ holds for any $\lambda_i \in \Lambda$ $(i=1, 2, \cdots)$. Let Λ be well ordered and let normal coverings $\{\mathfrak{U}_{\lambda} | \lambda \in \Lambda\}$ be denoted by $\mathfrak{U}_1, \mathfrak{U}_2, \cdots, \mathfrak{U}_{\lambda}, \cdots$. For a normal covering \mathfrak{U}_1 , we can take an $H_1 \in \mathfrak{B}_1$ such that $\mu(H_1) > 0$ holds. Now fix a $\lambda_0 \in \Lambda$ and suppose that for any $\nu < \lambda_0$ we can choose $H_{\nu} \in \mathfrak{B}_{\nu}$ such that $\mu(\bigcap_{i=1}^{\infty} H_{\nu_i}) > 0$ for any $\nu_i < \lambda_0$ $(i=1, 2, \cdots)$. Since there exists at most countable number of $H_{na}^{\lambda} \in \mathfrak{B}_{\lambda}$ with $\mu(H_{na}^{\lambda}) > 0$ for each λ , we denote them as $\{H_i^{\lambda}\}$ $(i=1, 2, \cdots)$. Now put $E_{\lambda} = \bigcup_{n,a} \{ H_{na}^{\lambda} \mid \mu(H_{na}^{\lambda}) = 0 \}$. $\{ H_{na}^{\lambda} \}$ being a discrete open collection for any λ and n, it follows from (2) that $\mu(E_{\lambda})=0$. Since $X = E_{\lambda} \smile (\bigcup_{i=1}^{\infty} H_i^{\lambda})$, we have $\mu(\bigcup_{i=1}^{\infty} H_i^{\lambda}) = \mu(X)$. If it were impossible to choose an $H_{\lambda_0} \in \mathbb{U}_{\lambda_0}$ such that $\mu((\bigcap_{i=1}^{\infty} H_{\nu_i}) \frown H_{\lambda_0}) > 0$ for any $\nu_i < \lambda_0$ $(i=1,2,\cdots)$, there would exist $\{\nu_{ij}\}$ $(j=1,2,\cdots)$ for any H_{i^0} satisfying the following conditions:

i) $\nu_{ij} < \lambda_0$ ii) $\mu((\bigcap_{j=1}^{\infty} H_{\nu_{ij}}) \frown H_i^{\lambda_0}) = 0.$

Then it would hold that

$$\mu((\bigcap_{i,j}H_{\nu_ij})\frown(\bigcup_iH_i^{\lambda_0}))=0.$$

This contradicts the following facts: $\mu(\bigcap_{i,j} H_{\nu_i j}) > 0$ and $\mu(\bigcup_i H_i^{\lambda_0}) = \mu(X)$. Hence the induction is completed. Then $\{H_{\lambda} \mid \lambda \in \Lambda\}$ is obviously a Cauchy family of gX. Therefore, there exists a point $p \in X$ such that any neighborhood $U_p \in \mathfrak{B}^*(X)$ of p contains some H_{λ} . Since $\mu(H_{\lambda}) > 0$ for any $\lambda \in \Lambda$, any neighborhood $U_p \in \mathfrak{B}^*$ of p has

positive μ -measure. This contradicts the fact that μ is locally measure 0. Thus we have $\mu(X)=0$, which completes the proof.

Concerning two-valued measures, we have the following results.

Theorem 2. Let X be a space with a complete structure. Then the following conditions are equivalent:

(1) any closed discrete subset in X has the power of two-valued measure 0,

(2) for any two-valued Baire measure μ in X, the union of discrete collection of open subsets $\{G_a \mid G_a \in \mathfrak{P}(X), \mu(G_a)=0\}$ has also μ -measure 0,

(3) any two-valued Baire measure in X which is locally measure 0 has total measure 0,

(4) any two-valued Baire measure in X is semi-reducible.

Proof. It is sufficient to prove only $(2) \rightarrow (3)$. Let μ be a twovalued Baire measure in X which is locally measure 0, and suppose that $\mu(X)=1$ holds. Let gX be a complete structure of X, let $\{\mathfrak{ll}_{\lambda} | \lambda \in \Lambda\}$ be the uniformity of gX and let $\mathfrak{B}_{\lambda} = \{H_{n\alpha}^{\lambda} | \alpha \in A_{\lambda}, n=1, 2, \cdots\}$ be an open refinement of \mathfrak{ll}_{λ} such that $\{H_{n\alpha}^{\lambda} | \alpha \in A_{\lambda}\}$ is a discrete collection with $H_{n\alpha}^{\lambda} \in \mathfrak{P}(X)$ for each n. Then we can choose an $H_{\lambda} \in \mathfrak{B}_{\lambda}$ with $\mu(H_{\lambda})=1$ for any λ . Since it is obvious that $\{H_{\lambda} | \lambda \in \Lambda\}$ has the finite intersection property, $\{H_{\lambda} | \lambda \in \Lambda\}$ is a Cauchy family. Therefore there is a point $p \in X$ such that any neighborhood $U_p \in \mathfrak{B}^*(X)$ of p contains some H_{λ} . Thus any neighborhood $U_p \in \mathfrak{B}^*(X)$ of p has positive μ -measure. This contradicts the fact that μ is locally measure 0. Hence we have $\mu(X)=0$, which completes the proof.

Since a space which has the property (4) in Theorem 2 is a *Q*-space [2, Theorem 16], we have the following corollary, which has been shown by Shirota [6].

Corollary. Let X be a space with a complete structure. Then the following conditions are equivalent:

- (1) X is a Q-space,
- (2) any closed discrete subset in X is a Q-space.

Remark. We note that we can replace Baire measures with Borel measures and finite measures with σ -finite measures in theorems stated above.

References

- E. Hewitt: Rings of real-valued continuous functions, Trans. Amer. Math. Soc., 64, 45-99 (1948).
- [2] E. Hewitt: Linear functionals on spaces of continuous functions, Fund. Math., 37, 161-189 (1950).
- [3] T. Ishii: On semi-reducible measures, Proc. Japan Acad., 31, 648-652 (1955).
- [4] M. Katětov: Measures in fully normal spaces, Fund. Math., 38, 73-84 (1951).
- [5] E. Marczewski and R. Sikorski: Measures in non separable metric spaces, Coll. Math., 1, 133–139 (1948).
- [6] T. Shirota: A class of topological spaces, Osaka Math. J., 4, 23-40 (1952).
- [7] A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc., 54, 977-982 (1948).