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In this note we show that main results concerning semi-reducibility
of Baire (Borel) measures, which have been proved by Marczewski and
Siorski in metric spaces, and by Kat6tov [4, Theorem 1 and the
present author 3, Theorem 4_] in paracompact spaces, are valid in
completely regular space with a complete structure. The case of
two-valued measures has already been considered by Shirota 6,
hough his reul is related o Q-space of Hewitt [1. We use he
same notations as in he previous paper 3_]" *(X)-all of Baire
subsets in a T-space X, C(X, R)-all of real-valued continuous func-
tions on X,P(f)-- {x[f(x)>O, f C(X,R)}, (X)- {P(f)lf C(X,R)}.

All spaces considered are completely regular spaces and all
measures considered are finite measures, unless the contrary is ex-
plicitly staed.

Lerama 1. If any closed discrete subset in a Tl-space X has the
power of (two-valued) measure O, then for any (two-valued) Baire
measure in X, the union of a discrete collection of open subsets
{G G 3(X), (G)--..0} has also -measure O.

Since he proof is essentially sated in the previous paper 3,
Theorem 4], we do not repeat it here.

Lemma 2. Le$ lI U e A} be a normal covering of a T-space
X. Then $here exists a refinement - {Gna e A, n-- 1, 2,... of lI
such $hag G e A} is a discrege collecgion wigh G e (X) for
each n.

Proof. Let lt-{U[ e A} be a normal covering of X and let

{lI} be a normal sequence such that lt>lI>... :>lI>.... Then,
as Stone [7 has showed, there exists a cloed covering {F1 e A,
n-l, 2,... satisCying he ollowing conditions:

i)
ii) {’F I e A} is a discrete collection for each n,

1) A measure z defined on a a-field containing Baire family in a T-space is
called semi-reducible if there exists a closed subset Q such that (1) z(G)>0 holds if
G is open, Ge, G-,Q-, and (2) z(F)=O holds if F is closed, Fe, FQ=.

2) A discrete set is called to have the power of (two,valued) measure 0, if every
(two-valued) measure, defined for aI1 subsets and vanishing for all one point, vanishes
identically.

3) A collection {HIeA} of subsets of a T-space is called discrete if (1) the

closures Ha are mutually disjoint, (2) eBH is closed for any subset B of A.
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iii) S(F., lt.+) U
Let {f,} be continuous unctions as follows: f.(x)-I if x e F,,,
f.(x)--O if x S(F,,, 1I,,), 0 f.(x) 1 otherwise. Set

f,(x)>0}. Then, since G,,S(F,, 1t.+), we have G,,S(G,, +)
S(S(F,, ,+), ,+)S(F,, ,+). We shall show that F= U
is closed in X for any subset B of A. Suppose that pe F. Then

every neighborhood N(p) of p mees some G,( B) and so meets
some G.,(a B). If N(p) is contained in S(p, ,+), we have p e S
(G,, II,+)S(F,, ,+). This shows tha every neighborhood N(p)
of p contained in S(G,,II,+) mees only one G,,. Thus it holds
hat peG,, i.e., peF. Hence =[G,,IA, n=l, 2,...} is a
refinement of satisfying the necessary conditions.

Lemma 3. In a space X the following conditions are equivalent:
( 1 ) any (wo-valued) Baire measure in X which is locally meas-

ure 0 has to$al measure O,
(2) any (wo-valued) Baire measure in X is se-reducible.
Proof. (1)(2). Let be a (two-valued) Baire measure and

let Q()= {p (U)O for any neighborhood U (X) bf p}. If
Q(u)=, we have (X)-0 by (1) and so is obviously semi-reducible.
Therefore, we can suppose hat Q()@. In the case when is a
two-valued measure the subset Q() contains only one point, and
hence it is trivial hat is semi-reducible. In general case we show
that (F)=0 is valid or any closed subset F such that F e $*(X)
and FQ()- hold. For this purpose we define a Baire measure

as follows:
,(B)=(B.F) for any Baire subs B of X.

Then, since, is locally measure 0, we obtain ,(X) (F) 0. (2)(1).
Let be a (two-valued) Baire measure in X which is locally measure
0. Since is semi-reducible by the hypothesis, there exists a closed
subset Q such that 1) (G)0 holds if G is open, G e *(X), GQ
and 2) (F)-0 holds if F closed, F e *(X), F.Q=. But the
closed subset Q must be a null set, for is locally measure 0.
Hence we obtain (X)-0 by 2).

Lemma 4. If any ($wo-valued) Baire measure in a space X which
is locally measure 0 has $otal measure O, $hen any closed discrete subset
in Xs the power of (two-valued) measure O.

Proof. Let, be a (two-value) Borel measure in a closed discrete
subset Y= {p,}X vanishing at each poin p,. We define a (two-
valued) Baire measure in X as follows:

4) A Baire measure z is called locally measure 0, if for any point p e X there
is a neighborhood Ue*(X) of p with a(U)=0.

5) The subset Q(z) is obviously closed in X.
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/(B)=,(B, Y) for any Baire subset B of X.
Since / is obviously locally measure 0, we obtain #(X)=v(Y)= 0,

which shows that Y has the power of (wo-valued) measure 0.
Theorem 1. Let X be a space with a complete structure. Then

the following conditions are equivalent:
( 1 ) any closed discrete subset of X has the power of measure O,
(2) for any Baire measure in X, the union of discrete collec-

tion of open subsets [G[ G e q3(X), #(G)-0} has also l-measure O,
(3) any Baire measure in X which is locally measure 0 has

total measure O,
(4) any Baire measure in X is semi-reducible.
Proof. (1)-> (2), (3)

_
(4) and (3) -+ (1) follow from Lemmas 1, 3

and 4 respectively. Hence we shall prove only (2)-+(3). Let / be
a Baire measure in X which is locally measure 0, and suppose that
/(X) >0 holds. On the other hand, let gX be a complete structure
of X and let [lzl e A} be the uniformity of gX. Then, by Lemma
2, here exists an open refinemen =[H] e A, n--l, 2,... of
1t such %hat [H,la A} is a discrete collection with H e (X)
for each n, since l[z is a normal covering. Hence by (2) we have
/(H)>0 for some n and a. Moreover by the %ransfinite induction,
we can show that it is possible to choose an H e 3z for any e A
such that /(7_Hz)>0 holds for any e A (i-1,2,...). Let A
be well ordered and let normal coverings [lizI e A} be denoted by
l, lt.,-.., 1/,.... For a normal covering lI, we can take an H e

such tha /(H)0 holds. Now fix a o e A and suppose that for
any ,< we can choose H.e such that /(fqH)>0 for any

(i-1, 2,...). Since there exists at most countable number of H e

with /(H,)>0 for each , we denote them as [H] (i=1,2,..-).
Now pu Ez--,,[H:I(H)--O}. [H:} being a discrete open
collection for any and n, it follows from (2) hat /(E)--0. Since
X=E(LJ=H ), we have /(LJ=,/ )-/(X). If it were impossible
o choose an Hzo e I such that /((f’),%H),Ho):>0 for any
(i- 1, 2,...), there would exist [,} (j= 1, 2,...) for any Ho satisfy-
ing the following conditions:

i)
ii) (( %H,) H,o) O.

Then it would hold that

This contradicts the following facts: (fq,,. H:) > 0 and /(U,.//o)
--/(X). Hence ,he induction is completed. Then [Hz e A} is.
obviously a Cauchy family of gX. Therefore, there exists a point
p e X such tha, any neighborhood U e *(X) of p contains some
Since /(Hz)>0 for any e A, any neighborhood U e * of p has
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posifive -measure. This eonfradiefs fhe faef thaf t* is locally meas-
ure 0. Thus we have (X)=0, which complefes Zhe proof.

Concerning two-valued measures, we have the following resulfs.
Theorem 2. Let X be a space with a complete structure. Then

the following conditions are equivalent:
( 1 ) any closed discrete subset in X has the power of two-valued

measure O,
(2) for any two-valued Baire measure t in X, the union of

discrete collection of open subsets {GI G 3(X),/(G):0} has also
-measure O,

( 3 ) any two-valued Baire measure in X which is locally measure
0 has total measure O,

(4) any two-valued Baire measure in X is semi-reducible.
Proof. I is sufficient o prove only (2)-->(3). Let be a two-

valued Baire measure in X which is locally measure 0, and suppose
Cha /(X)=I holds. Le gX be a complete sructure of X, let
{lti A} be the uniformity of gX and le :{HI A, n:l,
2,...} be an open refinement of lI such that {H,laeA} is a
discrete collection with H e 3(X) for each n. Then we can choose
an H e with #(H): 1 for any . Since it is obvious that {HI e A}
has the finite intersection property, {Hzl e A} is a Cauchy family.
Therefore there is a point p e X such that any neighborhood U e *(X)
of p contains some H. Thus any neighborhood U, e *(X) of p has
positive -measure. This contradicts the fact that is locally meas-
ure 0. Hence we have (X)---0, which completes the proof.

Since a space which has the property (4) in Theorem 2 is a Q-
space 2, Theorem 16_, we have %he following corollary, which has
been shown by Shirota [6.

Corollary. Let X be a space with a complete structure. Then
the following conditions are equivalent:

(1) X is a Q-space,
(2) any closed discrete subset in X is a Q-space.
Remark. We noe hat we can replace Baire measures with

Borel measures and fini.e measures with a-finite measures in theorems
stated above.
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