51. On Compact Semi-groups

By Kiyoshi Iséki
Kobe University
(Comm. by K. Kunugr, m.J.A., April 12, 1956)

In this note, we shall extend a theorem of my paper [4], and apply the theorem to study the structure of compact semi-groups. ${ }^{1)}$

A semi-group S of elements $a, b, c \cdots$ is called a homogroup if

1) S contains an idempotent e,
2) for each a of S, there exist elements $a^{\prime}, a^{\prime \prime}$ such that

$$
a \alpha^{\prime}=e=a^{\prime \prime} a
$$

3) for every a of S,

$$
a e=e a .
$$

The terminology "homogroup" has been used by G. Thierrin [8], A. H. Clifford and D. D. Miller [1] have used the "semi-group having zeroid elements''. In my paper [4], we proved the following

Theorem 1. Any compxct commutative semi-group is homogroup.
The similar theorem has been also obtained by R. J. Koch [6].
Definition. A semi-group S is called reversible (following G. Thierrin [9]), if for any two elements a and $b, a S \frown b S \neq 0 \neq S a \frown S b$.

It is easily seen that any commutative semi-group or any semigroup with zero-element is reversible. We shall prove Theorem 2 which is a generalisation of Theorem 1.

Theorem 2. A compact semi-group is homogroup, if and only if it is reversible.

Such a theorem for finite semi-group has been proved by G. Thierrin [9].

Proof. Suppose that S is compact homogroup, then S contains an idempotent e, and, for any two elements a and b, there are two elements a^{\prime}, b^{\prime} such that

$$
a a^{\prime}=e=b b^{\prime} \quad a^{\prime}, b^{\prime} \in S
$$

Therefore $a S \frown b S \ni e$. Similarly $S a \frown S b \ni e$. This shows that $a S \frown b S$, $S a \frown S b$ are non-empty.

Conversely, suppose that S is reversible, if S contains zeroelement 0 , Theorem 2 is clear. Suppose that S does not contain zero-element 0 . By the compactness of S, S contains at least one closed right minimal ideal A (for detail, see K. Iséki [4]). Suppose that B is a closed minimal right ideal of S different from A. Let

1) For general theory of semi-groups, see P: Dubreil [3].
a and b be elements in A and B respectively, then we have $a S \frown b S$ $\neq 0$. Hence $A S \frown B S \neq 0$. This implies $A \frown B \neq 0$. By the minimality of $A, B, A=B . \quad S$ contains only one closed minimal right ideal A. By a theorem of A. H. Clifford [2], A is a minimal left ideal of S, since S does not contain zero-element. Let $a \in A$, then $a A$ is a closed right ideal of S and $a A \subset A$. Hence $a A=A$.

Similarly, since A is two-sided ideal, $A \supset A a$. By the minimality of $A, a A=A=A a$ for a of A. Hence A is a subgroup of S. By a theorem of G. Thierrin [8], S is a homogroup.

From Theorem 2, we obtain Theorem 1 and the following
Corollary 1. A finite semi-group is homogroup, if and only if it is reversible.

Let S be a compact semi-group, and $\gamma(a)$ the set of positive powers of an element a of S. It is clear that $\overline{\gamma(a)}$ is a compact commutative semi-group. Therefore, by Theorem 1, $\gamma(a)$ is a homogroup. Hence $\overline{\gamma(a)}$ contains only one idempotent and a compact commutative subgroup of S.

Theorem 3. Any compact semi-group contains at least one idempotent. ${ }^{2)}$

Let e be an idempotent of S, and $K^{(e)}$ the set of elements $a \in S$ such that $e \in \overline{\gamma(a)}$. S. Schwarz [7] has proved that, for a compact commutative semi-group, each $K^{(e)}$ is a semi-group. We shall extend his result to strongly reversible semi-group, a new class: a semigroup S is said to be strongly reversible, if for any two elements a, b of S, there are natural numbers r, s and t such that

$$
(a b)^{r}=a^{s} b^{t}=b^{t} a^{s} .
$$

Similar theorem for strongly reversible periodic semi-group has proved in my Note [5].

Theorem 4. For strongly reversible compact group, each $K^{(e)}$ is a semi-group.

Proof. The idea of proof is due to S. Schwarz [7]. Let $\left\{U_{\tau}(e)\right\}$ be a complete system of neighbourhoods of e, then every $A_{\tau}=U_{\tau}(e)$ $\frown \gamma\left(a^{s}\right)$ is non-empty. Let $A_{\tau}=\left\{a^{\tau_{1} s}, a^{\tau_{2} s}, \cdots\right\}$, and the set B_{τ} is defined by $\left\{b^{\tau_{1} t}, b^{\tau_{2} t}, \cdots\right\}$. We shall show $\bigcap_{\tau} \bar{B}_{\tau} \neq 0$. For any finite $B_{\tau(1)}, \cdots$ $B_{\tau(k)}$, we take $A_{\tau(1)}, \cdots, A_{\tau(k)}$. For each $A_{\tau(t)}$, there is a neighbourhood $U_{\tau(i)}(e)$ of e. Then we can find a neighbourhood $U_{\mathrm{p}}(e)$ such that

$$
U_{\tau(1)} \frown \cdots \frown U_{\tau(k)} \supset U_{\mathrm{p}}(e) .
$$

$e \in \gamma\left(a^{s}\right)$ implies $A_{\rho}=U_{\rho}(e) \frown\left\{a^{s}, a^{2 s}, \cdots\right\}=\left\{a^{\rho_{1 s}}, a^{\rho_{2} s}, \cdots\right\}$. Let $B_{\rho}=\left\{b^{p_{1} t}\right.$, $\left.b^{\rho}{ }^{2} t, \cdots\right\}$, then

[^0]$$
0 \neq B_{\mathrm{p}} \subseteq B_{\tau(1)} \frown \cdots \frown B_{\tau(k)} .
$$

Therefore $\left\{\bar{B}_{\mathrm{p}}\right\}$ has the finite intersection property and this shows that $\cap \bar{B}_{\tau}$ is not empty, since S is compact. Take one element d of $\bigcap_{\tau} \bar{B}_{\tau}$. Since S is strongly reversible, we can find three positive integers u, v and w such that

$$
\begin{aligned}
(e d)^{u} & =e^{v} d^{w}=d^{w} \epsilon^{v} \\
& =e d^{w}=d^{w} e .
\end{aligned}
$$

For any $U\left((e d)^{u}\right)$, we take $U_{\sigma}(e), U\left(d^{w}\right)$ such that

$$
U_{\sigma}(e) \cdot U\left(d^{w}\right) \subset U\left((e d)^{w}\right) .
$$

So we define

$$
\begin{aligned}
& A_{\sigma}=U_{\sigma}(e) \frown \gamma\left(a^{s}\right)=\left\{a^{\sigma_{1} s}, a^{\sigma_{2} s}, \cdots\right\} \\
& B_{\sigma}=\left\{b^{\sigma_{1} t}, b^{\sigma_{2} t}, \cdots\right\} .
\end{aligned}
$$

Then $\bar{B}_{\sigma} \supset \bigcap_{\tau} \bar{B}_{\tau} \ni d$. Therefore we have $\bar{B}_{\sigma} \ni d^{k}$ and

$$
0 \neq B_{\sigma} \frown U\left(d^{w}\right)=U\left(d^{w}\right) \frown\left\{b^{\sigma_{1} t}, b^{\sigma_{2} t}, \cdots\right\} .
$$

From $b^{\sigma_{i} t} \in U\left(d^{w}\right) \frown B_{\sigma}$ and $a^{\sigma_{i} s} \in A_{\sigma}=\left\{\alpha^{\sigma_{1} s}, a^{\sigma_{2} s}, \cdots\right\}$ and strongly reversibility of S, we have

$$
\begin{aligned}
(a b)^{r \sigma_{i}}= & a^{s \sigma_{i}} b^{{t \sigma_{i}}}\left(U_{\sigma}(e) \frown A\right) \cdot\left(U\left(d^{w}\right) \frown B_{\sigma}\right) \\
& \subset U_{\sigma}(e) \cdot U\left(d^{w}\right) \subset U\left((e d)^{u}\right) .
\end{aligned}
$$

Therefore we have $(a b)^{r \sigma_{i}} \in \overline{\gamma\left((a b)^{r}\right)}$. Hence $U\left((e d)^{u}\right) \frown \overline{\gamma\left((a b)^{r}\right)} \neq 0$ and we have $(e d)^{u}=e d^{w} \in \bar{\gamma}\left((a b)^{u}\right)$.

Next, we shall prove $e \in \overline{\gamma\left((a b)^{r}\right)}$. To prove this, let $D=\left\{e d^{w}, e d^{2 w}\right.$, $\cdots\}$, then $e d^{w} \in \overline{\gamma\left((a b)^{r}\right)}$ and $e d^{k w}(k=1,2, \cdots)$ are in $\overline{\gamma\left((a b)^{r}\right)}$. Hence
 take $U^{\prime}(e)$ such that $U^{\prime}(e) U^{\prime}(e) \subset U(e)$. From $\gamma\left(d^{w}\right) \subseteq \bar{\gamma}\left(b^{t}\right)$, we have $\bar{\gamma}\left(d^{w}\right) \subseteq \bar{\gamma}\left(b^{t}\right)$ and $e \in \overline{\gamma\left(d^{w}\right)}$. This shows that $U^{\prime}(e) \frown \gamma\left(d^{w}\right) \neq 0$. Therefore, for some ρw,

$$
d^{p v v} \in U(e)
$$

and

$$
e d^{p w} \in U^{\prime}(e) U^{\prime}(e) \subset U(e)
$$

Hence, we have $e \in \bar{D} \subset \overline{\gamma\left((a b)^{r}\right)}$. This completes the proof of Theorem 3.

From Theorem 3, we have the following
Theorem 4. If a compact semi-group S is strongly reversible, then each set $K^{(e)}$ is maximal semi-group, i.e. $K^{(e)}$ is the largest sub-semi-group of S containing only one idempotent $e . S$ is the sum of disjoint semi-groups $K^{(e)}$.

References

[1] A. H. Clifford and D. D. Miller: Semi-groups having zeroid elements, Amer. Jour. Math., 70, 117-125 (1948).
[2] A. H. Clifford: Semi-groups containing minimal ideals, Amer. Jour. Math., 70, 521-526 (1948).
[3] P. Dubreil: Algèbre, Paris (1954).
[4] K. Iséki: On compact abelian semi-groups, Michigan Math. Jour., 2, 59-60 (1953).
[5] K. Iséki: Contribution to the theory of semi-groups. I, Proc. Japan Acad., 32, 174-175 (1956).
[6] R. J. Koch: Theorems on mobs (mimeographed), Tulane University (1953).
[7] S. Schwarz: K teorii Hausdorffobih bikompaktnih polugrupp, Czechoslovak Math. Jour., 5 (80), 1-23 (1955).
[8] G. Thierrin: Sur quelques classes de demi-groupes, C. R. Paris, 236, 33-35 (1953).
[9] G. Thierrin: Sur quelques propriétés de certaines classes de demi-groupes, C. R. Paris, 239, 1335-1337 (1954).

[^0]: 2) Theorem 3 has been proved by some writers.
