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77. On H.(9’(S"); Z)
By Tatsuji KUDO and Sh6r6 ARAKI

Faculty of Science, Kyusyu University

(Comm. by K. KUNUGI, M.J.A., May 15, 1956)

1. In his note we shall give a brief account about he deter-
mination of %he modulo 2 Pontrjagin ring H,(tg(S’); Z) of the N-
times iterated loop space 9(S) of the n-sphere S", where 0< N<n.

For this purpose we first introduce a new concept of an H.-space,
of which %he (n + 1}4imes iterated loop space of a metrizable space is
a ypical example. Then we define some homo]ogical operation modulo
2, which may, at leas formally, be regarded as dual o the Steenrod’s
squaring operations. In fact, although they are defined only within
%he category of H-spaces, necessary Sransgression theorems in he
homology theory may be established with respect to these operations.

The complete discussions of our note will be published in a forth-
coming Memoirs of %he Faculty of Science, Kyusyu University.

2. H,*spaces. Definition 1. We say that a space X has an
H,-structure (or is an H,-space), when there exists a system of maps
[}, (0 m n) subject to the following conditions,:

(i) 0 is a map
(1.a) " I XX-X
where I is a unit interval and I the m-fold product of I; in par-
ticular
(1.a)o 0o" X X--> X.
(ii) O’s satisfy

O(t,. ., tt-, O, t,+,. ., t; x, y)=O,_(t,. ., t,_; x, y),
(1.b) O(t, ., t,_, 1, t,/,. ., t; x, y)=0,_(1-t,. ., 1-t,_; y, x),
for any m, i, (t,..., t) s I, and x, y X.
(iii) There exists an elemen e e X, called the unit of this H-srue-
ture, satisfying
(1.c) O(t,. ., t; x, e)=O(t,. ., t; e, x)=x
for any (t,.-., t) e I and x e X.

For an H.-space X, O0 defines a product on X, and we may con-
sider X as an H-space in the widest sense. It is called homotopy-
associative if it is so when regarded as an H-space.

Let X be an H-space and X=tf(X) he space of loops in X
with e as the reference point, and X( be the space of paths ending
at e, with che usual topology.

Proposition 1. If X is an H-spce, tken X and X’ are also
H-spaces
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In fact, we define
(2) O’IxXxXX (or
for 0 m n as follows:
(2’) e,dt ,. ., .,
for any $, v e X (or e X:), where t is he parameter of loops (or of
paths).

These 0 s obviously define an H,-sructure on X (or on
which we shall call he induced H,-sructure. We note that X is
a subspace of X[, and he maps {} defined above for X are the
restrictio of hose 2or

Theorem 1. Let X be a metric H-spaces and X, X: be as above.
[}, O m n, will denote the maps for X as well as the induced
ones in X and X:. Then we may construct a map

I+ X:,( ) xX;xX  
of the same operties as the other maps {0}, Omn. Moreover

i.e., +, together with induced 8’s, defines an H+-structure on X,.. H*squarg operations. For an H-space X we define opera-
tio) of degree i
( 4 ) 0" Q(X) Q(X) Q(X),
for 0 i G n, satisfying

where c e Q(X), c e Q(X), and is the boundary operator in the
operaor-complex.* For the definition of these operatio we use
essentially the maps G, 0 G i G n, with some auxiliary ools from the
theory of operator-complexes. These operaio enable us o define
the following maps

( 5 ) ," Hq(X; Z) H+,(X; Z)
for all q and i such that q0 and 0GiGn. We call these Q,
0 i n, H-squaring operations on an H-soace X. o, Q,’",
are homomorphisms, while Q. is not necessarily so. The basic prop-
erty of our H-squaring operations

Theorem 2. Under the same hypotheses as in Theorem 1, we
consider the fibering (X[, X, , X). Let r denote the homology trans-
gression homomorphism of this fibering. Then
(6)
for OGiGn.

More precisely, if u e Hq(X; Z)is gragressive, then Qt(u), 0 i
n, is also gragressive; operation Q+" Mq_ M:q+_ well

defined for 0 m n, where Mq-Hq(X; Z)/O. op;(0); and there holds
the commutativiy (6).

1) Cf. N. Steenrod- Reduced powers of cohomology classes, Ann. Math.,
47-67 (1952).
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4. Proposition 2. Let X be a simply-connected metric homotopy-
associative Ho-space and let X, X( be as above. I.f he Pontrjagin
ring H.(X; Z) has a simpl system of generators) x, x, ., x,.
consisting of transgressive elements x (with respect to the fibering
(X, X, , X)), then H.(X; Z) is a polynomial ring with generators
y, y:,. ., y,. where y is a transgression image of x.

For the proof of this proposition we need a lemma) due o
J.-P. Serre abou an algebraic property of spectral sequences.

Le$ X be a metric space with metric p, then (X) is also a
metric space; obviously he topologies (X) (defined by h metric
and by he cempac-open opoloy) are the same. (X) is an H-space
wish respee$ o the usual composition of loops. We give another
H-structure on 2(X) by he following rule of composition

for atl,

p(e,for any l, l: 9(X), where a=-- This H-structure is
p(e, 11)+ p(e, l)

homotopy-associative and an H0-strucure in our sense. Since the
identity map of t?(X) onto itself is easily seen o be an H-equivalence
between the above wo H-structures, the Pontrjagin rings H.(tg(X);
Z.) are the same for %hese two H-structures. Consequently, withou$

loss o2 generality we may consider 9(X) as a meC.ric homoopy-
associative H0-space if X is a metric space.

After these preparations we can determine the Ponrjagin ring
H.(9(S’); Z) (N<n), by making use of Theorem 2 and Proposition
2, in entirely he same way as the determination of H*(II, n; Z:).)
Tha is, if we use the symbol instead of Q and denote Q’.-.-’
by Qr, j= [i, i,..., i}, we have

Theorem ]. Pontriagin ring H,(t2(Sn);Z) (N<n) is a poly-
nomial ring whose generators are u,_ and all admissible Qu_’s
such that (J)>n-N and l(J)<n, where u,_ is an element of
degree n-N and J= [il,..., i} is called admissible when i,_ 2i8 for
2s._<=r, and (J)=i-i. i, l(J)-i,.

2) This notion is due to A. Borel. Cf. A. Borel: Sur la cohomologie des espaces
fibr4s principaux et des espaces homognes des groupes de Lie compactes, Ann. Math.,
ST, 115-207 (1953).

3) This lemma was suggested by Serre on the occasion of his visiting our Institute.
It asserts" "Let Era’, ,aJr’’ r_2, be two algebraic homological (or cohomological)
spectral sequences bigraded with non-negative degrees, over a field k, and E,---E2,
ODE:,, E’,= E’,(R) E,,. Moreover, let {hr, r2} be a homomorphism from
to {Er’ }. Then, in the following three assertions, (a) h’, is isomorphic for all a0,

() h, is isomorphic for all b_0, (r) h’ is isomorphic for all a, b_>_0, any two con-
clude the rest ".

4) Cf. J.-P. Serre: Cohomologie mod 2 des complexes d’Eilenberg-MacLane, Com-
ment. Math. Helvet., 27, 198-232 (1953).


