93. On Solutions of a Partially Differential Equation with a Parameter

By Taira Shirota
Osaka University
(Comm. by K. Kunugi, m.J.A., June 12, 1956)

Let $P\left(\frac{\partial}{\partial x}, \lambda\right)$ be a polynomial of derivations $\sum_{|p| \leq m} a_{p}(\lambda) \frac{\partial^{p}}{\partial x^{p}}$ defined in R^{n} and with a parameter λ, where $a_{p}(\lambda)$ are complex valued continuous functions on a separable and locally compact space Λ and where the degrees of polynomials $P(\xi, \lambda)$ are independent of $\lambda \in \Lambda$. Then we consider the existence of distribution solution, which is continuous with respect to $\lambda \in \Lambda$, of the partially differential equation

$$
\begin{equation*}
P\left(\frac{\partial}{\partial x}, \lambda\right) S_{x}(\lambda)=T_{x}(\lambda) \tag{1}
\end{equation*}
$$

where $T_{x}(\lambda)$ is a given continuous function on Λ into a distribution space.

In the special case in this direction where Λ consists of a point, many interesting results are obtained by B. Malgrange, L. Hörmander and L. Ehrenpreis. ${ }^{1)}$ Furthermore recently F. Tréves ${ }^{2)}$ considered the case where $T_{x}(\lambda)=\delta$. Here we prove more general theorems applying considerations of these author's.

Theorem 1. For any continuous function $T_{x}(\lambda)$ on Λ into $\mathfrak{D}_{x}^{\prime}$ there is a solution $S_{x}(\lambda)$ of the equation (1) where $S_{x}(\lambda)$ is a continuous function on Λ into $\mathfrak{D}_{x}^{\prime}$ and where $S_{x}(\lambda)=0$ whenever $T_{x}(\lambda)=0$.

Theorem 2. Under the same assumption of Theorem 1, if $S_{x}(\lambda)$ is a continuous solution such that

$$
\begin{equation*}
P\left(\frac{\partial}{\partial x}, \lambda\right) S_{x}(\lambda)=T_{x}(\lambda) \quad \text { for } \lambda \in \Lambda_{0} \tag{2}
\end{equation*}
$$

where Λ_{0} is a closed subspace of Λ, then there is a continuous solution $S_{x}^{\prime}(\lambda)$ of (1) defined over Λ such that

$$
\begin{equation*}
S_{x}^{\prime}(\lambda)=S(\lambda) \quad \text { for } \lambda \in \Lambda_{0} \tag{3}
\end{equation*}
$$

Furthermore we may replace $\mathfrak{D}_{x}^{\prime}$ by ε_{x}, that is, we can prove the following

[^0]Theorem 3. For any continuous function $f(x, \lambda)$ on Λ into ε_{x}, there is a solution $g(x, \lambda)$ such that

$$
\begin{equation*}
P\left(\frac{\partial}{\partial x}, \lambda\right) g(x, \lambda)=f(x, \lambda) \tag{4}
\end{equation*}
$$

where $g(x, \lambda)$ is a continuous function on Λ into ε_{x}.
Moreover if $g(x, \lambda)$ is a continuous solution such that

$$
P\left(\frac{\partial}{\partial x}, \lambda\right) g(x, \lambda)=f(x, \lambda) \quad \text { for } \lambda \in \Lambda_{0}
$$

where Λ_{0} is a closed subspace of Λ, then we can find a continuous extension $g^{\prime}(x, \lambda)$ of the equation (4) over all $\lambda \in \Lambda$.

Theorem 2 immediately follows from Theorem 1. To show this, let $S(\lambda)$ be a continuous solution satisfying (2). Then by Theorem 1, there is a continuous solution $S^{\prime}(\lambda)$ of (1). Let $S^{\prime \prime}(\lambda)$ be a continuous extension ${ }^{3)}$ of $S(\lambda)-S^{\prime}(\lambda)$ over Λ. Since

$$
P\left(\frac{\partial}{\partial x}, \lambda\right)\left(S(\lambda)-S^{\prime}(\lambda)\right)=0 \quad \text { for } \lambda \in \Lambda_{0}
$$

by Theorem 1, there is a continuous solution $S^{\prime \prime \prime}(\lambda)$ such that

$$
P\left(\frac{\partial}{\partial x}, \lambda\right) S^{\prime \prime \prime}(\lambda)=P\left(\frac{\partial}{\partial x}, \lambda\right) S^{\prime \prime}(\lambda)
$$

and

$$
S^{\prime \prime \prime}(\lambda)=0 \quad \text { for } \lambda \in \Lambda_{0}
$$

Let $S(\lambda)$ be $S^{\prime}(\lambda)+S^{\prime \prime}(\lambda)-S^{\prime \prime \prime}(\lambda)$. Then $S(\lambda)$ is a solution of (1) which satisfies the equation (3).

The proof of Theorem 1.4) 1. First of all we show that we have only to prove the case where Λ is compact and

$$
\begin{equation*}
P(\xi, \lambda)=\xi_{1}^{m}+Q\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}, \lambda\right) \tag{5}
\end{equation*}
$$

with the $\operatorname{deg} \xi_{1} Q(\xi, \lambda)<m$. For assume that in this case our theorem is proved. Then since Λ is separable and locally compact, there is a locally finite open covering $\left\{U_{\alpha}\right\}$ of Λ such that U_{α} is compact and such that for any $\alpha P_{0}\left(\xi_{\alpha}, \lambda\right) \neq 0$ for any $\lambda \in U_{\alpha}$ and for a fixed point $\xi_{\alpha} \in R^{n}$, where P_{0} is the principal part of P. Hence for any α by a coordinate transformation on $R^{n} P(\xi, \lambda)$ assumes the abovementioned form. Furthermore let $\left\{f_{\alpha}\right\}$ be a partition of 1 with respect to $\left\{U_{\alpha}\right\}$. Then by the assumption there is for any α a continuous solution $S_{\alpha}(\lambda)$ such that

$$
P(\xi, \lambda) S_{\alpha}(\lambda)=f_{\alpha}(\lambda) T_{\alpha}(\lambda), \quad \lambda \in U_{\alpha},
$$

and

$$
S(\lambda)=0 \quad \text { for } \lambda \in \text { some neighbourhood of the boundary of } U_{\alpha}
$$ Thus setting $S_{\alpha}(\lambda)=0$ for $\lambda \notin U_{\alpha}$, we obtain the desired solution $\sum_{\alpha} S_{\alpha}(\lambda)$.

3) J. Dugundji: An extension of Tietze's theorem, Pacific J. Math., 1 (1951).
4) The proof of Theorem 3 may be accomplished by using the duality of ε and ε^{\prime} and is similar to, but simpler than the proof of Theorem 1. Therefore we shall omit the proof.
2. From now on we assume that Λ is compact and $P(\xi, \lambda)$ assumes the form described in (5). Now we decompose T_{λ} as follows.

Let $\left\{d_{t} \mid t=1,2, \cdots\right\}$ be a monotone increasing sequence such that for open sets $O_{0}=\{x \mid\|x\|<1\}$ and $O_{t}=\left\{x \mid\|x\|<t+1 \& x_{i}>d_{t}, i=1\right.$, $2, \cdots, n\}, \sum_{i=0}^{\infty} O_{i}$ contains a proper open cone with vertex O and center $\left\{x \mid x_{i}=x_{j}>0, i, j=1,2, \cdots, n\right\}$. Then there is a finite number of regular transformations $\Sigma_{1}=I, \Sigma_{2}, \cdots, \Sigma_{l}$ such that $\underset{\substack{i=1,2, \cdots \\ j=1,2, \cdots, l}}{U} \Sigma_{j}\left(O_{i}\right)+O_{0}=R^{n}$. Let $\left\{f_{j i}\right\}$ be a partition of 1 with respect to the covering and let $T_{\lambda j i}=f_{j i} T_{\lambda,}$. Furthermore let $T_{\lambda 1}=\sum_{i=0}^{\infty} T_{\lambda 1 i}$ and let $T_{\lambda j}=\sum_{i=1}^{\infty} T_{\lambda j i}$. Then we have only to prove the theorem for the case where the right hand side of (1) is $T_{\lambda 1}$, that is, the case where the carrier of T_{λ} is contained in $\bigcup_{i=0}^{\infty} O_{i}$. For let $T_{\lambda j}^{\prime}(\varphi)=T_{\lambda j}\left(\varphi\left(\Sigma_{j}^{-1} \cdot\right)\right)$. Then the carrier of $T_{\lambda j}^{\prime}$ is contained in $\bigcup_{i=1}^{\infty} O_{i}$. Thus if there are solutions $S_{\lambda j}^{\prime}$ such that $P\left(\frac{\partial}{\partial x}, \lambda\right) S_{\lambda j}^{\prime}=T_{\lambda j}^{\prime}$, setting $S_{\lambda j}(\varphi)=S_{\lambda j}^{\prime}\left(\varphi\left(\Sigma_{j} \cdot\right)\right)$, we obtain the desired solution $\sum_{j} S_{\lambda j}$.
3. ${ }^{5)}$ From now on we restrict our argument to the case where the right hand side of our equation (1) is $T_{\lambda}=\sum_{t=0}^{\infty} T_{\lambda t}$ with carriers (of $T_{\lambda t} \subset O_{t}$). Then $T_{\lambda t}$ are continuous functions on Λ into $\varepsilon_{x}^{\prime}\left(O_{t}\right)$. Since $\left\{T_{\lambda t} \mid \lambda \in \Lambda\right\}$ is compact in $\varepsilon_{x}^{\prime}\left(O_{t}\right)$, for any t there are an integer s_{t} and a number k_{t} such that

$$
T_{\lambda t}=P_{\lambda t}\left(\frac{\partial}{\partial x}\right) f_{\lambda t}
$$

where $\operatorname{deg} P_{\lambda t} \leqq s_{t}, \int\left|f_{\lambda t}\right| d x \leqq k_{t}$ and the carrier of $f_{\lambda t} \subset O_{t}$.
Now let r be a positive number and let $\varphi_{r}(\xi)$ be the unique positive solution of the equation $2 r_{\eta}=\log \left(\xi^{2}+\eta^{2}\right)$ for real $\xi(|\xi| \geqq \sqrt{e})$. Then we denote by $\gamma(r)$ the curve in C^{\prime} defined by

$$
\begin{array}{ll}
\eta=\varphi_{r}(\xi) & \text { for }|\xi|>\sqrt{e} \\
\eta=\varphi_{r}(\sqrt{e}) & \text { for }|\xi| \leqq \sqrt{e} \quad\left(\varphi_{0}(\xi)=0\right) \tag{6}
\end{array}
$$

where $\zeta=\xi+i \eta$. Furthermore let $r_{t}=\frac{d_{t}}{b_{t}}$, where b_{t} is chosen sufficiently large such that
(i) $\left\{r_{t}\right\}$ is monotone decreasing and $\quad r_{t} \leqq a$
for sufficiently small positive number a, and
(ii) $\sum_{t=1}^{\infty} k_{t}\left(\exp \left(-\varphi_{r_{t}}(\sqrt{e})\right)+r_{t}\right)<\infty$.
5) The idea of the step 3 is the same as one of Ehrenpreis, but I obtained this natural idea independently of him.

Then for any $\varphi \in \mathfrak{D}_{x}$,

$$
\begin{aligned}
& T_{\lambda}(\varphi)=\sum_{t=0}^{\infty} T_{\lambda t}(\varphi)=\sum_{t=0}^{\infty} \int_{R^{n}} \mathscr{F}^{-1}\left(T_{\lambda t}\right)(\xi) \widetilde{F}(\varphi)(\xi) d \xi \\
= & \int_{R^{n}} \mathscr{F}^{-1}\left(T_{\lambda 0}\right)(\xi) \widetilde{\mho^{n}(\varphi)(\xi) d \xi+\sum_{t=1}^{\infty} \int_{r\left(r_{t}\right)^{n}} \widetilde{F}^{-1}\left(T_{\lambda t}\right)(\zeta) \widetilde{\mho}(\varphi)(\zeta) d(\zeta) .}
\end{aligned}
$$

For $\mathfrak{F}^{-1}\left(T_{\lambda t}\right)(\zeta) \mathfrak{F}(\varphi)(\zeta)$ is an entire analytic function on C^{n},

$$
\begin{equation*}
\left|\tilde{\mathcal{F}}^{-1}\left(T_{\lambda t}\right)(\zeta)\right| \leqq k_{t}\left(1+|\zeta|^{s_{t}}\right) \exp \left(-d_{t}|\eta|\right) \tag{8}
\end{equation*}
$$

and

$$
|\mathfrak{F}(\varphi)(\zeta)| \leqq M(\varphi, s)(1+|\zeta|)^{-s} \exp (l|\eta|)
$$

for any ζ with $\eta_{t} \geqq 0(i=1,2, \cdots, n)$ and for any integer $s>0$. Hence it is a consequence of Cauchy's integral theorem.
4. Let q be a continuous function Λ into $R^{v^{\prime}}$ such that $q(\lambda)=$ $\left\{a_{p}(\lambda)\right\}$ and let $P^{\prime}(\xi, q(\lambda))=P(\xi, \lambda)$. Then $P^{\prime}\left(\xi, \lambda^{\prime}\right)$ may be extended over a relatively compact open set Λ^{\prime} of $R^{l^{\prime}}$. For any $j(=1,2, \cdots$, $3 m-1)$ let $Q_{t j}$ be the neighbourhood of $\gamma\left(r_{t}\right)+2 j i$ with radius 1 and let $U_{t j}=\left\{\left(\zeta^{*}, \lambda\right) \mid P^{\prime}\left(\zeta_{1}, \zeta^{*}, \lambda\right)=0\right.$ implies $\left.\zeta_{1} \oplus \bar{Q}_{t j}\right\}$ where $\zeta^{*} \in \gamma\left(r_{t}\right)^{n-1}$ and $\lambda^{\prime} \in \Lambda^{\prime}$. Then from the form (5) of $P^{\prime}\left(\xi, \lambda^{\prime}\right),\left\{U_{t j} \mid j=1,2, \cdots, 3 m-2\right\}$ is an open covering of $\gamma\left(r_{t}\right)^{n-1} \times \Lambda^{\prime}$. Now let $p_{t}(\zeta)$ be the projection $\left(p_{t}(\zeta)=\xi\right)$ from $\gamma\left(r_{t}\right)^{n-1}$ onto R^{n-1} and let $p^{\prime}\left(\zeta, \lambda^{\prime}\right)=\left(p(\zeta), \lambda^{\prime}\right)$. Then $\left\{p^{\prime}\left(U_{t j}\right)\right\}$ is an open covering of $R^{n-1} \times \Lambda^{\prime}$. Accordingly there is a locally finite partition $\left\{U_{t j t} \mid j=1,2, \cdots, 3 m-2, i=1,2,3, \cdots\right\}$ of $R^{n-1} \times \Lambda^{\prime}$ such that any $U_{t j t}$ is an open rectangle whose sides are not parallel to R^{n-1} and such that $U_{t j i} \subset P^{\prime}\left(U_{j}\right)$. Let $U_{t j i}\left(\lambda^{\prime}\right)$ be $\left\{\xi \mid\left(\xi, \lambda^{\prime}\right) \in U_{t j i}\right\}$, then $\operatorname{mes}\left(U_{t j i}\left(\lambda_{1}^{\prime}\right) \Delta U_{t j i}\left(\lambda_{2}^{\prime}\right)\right) \rightarrow 0$ when $\lambda_{1}^{\prime} \rightarrow \lambda_{2}^{\prime}$ and mes $\left(R^{n-1}-\bigcup_{j i} U_{t j i}\left(\lambda^{\prime}\right)\right)=0$ for any $\lambda^{\prime} \in \Lambda^{\prime}$. Furthermore let $p_{t}^{-1}\left(\sum_{i=1}^{\infty} U_{t j i}\left(\lambda^{\prime}\right)\right)=$ $W_{t j}\left(\lambda^{\prime}\right)$.

Finally let $S_{\lambda t j}(\varphi)$ be

$$
\int_{W_{t j}(q(\lambda))} d \zeta^{*} \int_{r\left(r_{t}\right)} \frac{\mathfrak{F}^{-1}\left(T_{\lambda t}\right)\left(\zeta_{1}+2 j i, \zeta^{*}\right) \mathfrak{F}(\varphi)\left(\zeta_{1}+2 j i, \zeta^{*}\right)}{P\left(\zeta_{1}+2 j i, \zeta^{*}, \lambda\right)} d \zeta_{1}
$$

and let $S_{\lambda}(\varphi)=\sum_{t=0}^{\infty} \sum_{j=1}^{3 m-2} S_{\lambda t i}(\varphi)$. Then $S_{\lambda}(\varphi)$ is an absolutely convergent series and uniformly bounded for any $\varphi \in B \subset \mathfrak{D}_{x}$ where B is any bounded set in \mathfrak{D}_{x}. For $P\left(\zeta_{1}+2 j i, \zeta^{*}, \lambda\right) \geqq 1$ for any $\left(\zeta_{1}, \zeta^{*}, \lambda\right) \in \gamma\left(r_{t}\right)$ $\times W_{t j}(q(\lambda))$, therefore we may consider the series

But from (6), (7), (8) and

$$
|\tilde{F} \varphi(\zeta)| \leqq M(B, s)(1+|\zeta|)^{-s} \exp (l|\eta|) \quad \text { for any } \varphi \in B
$$

where s is any positive integer and where l and $M(B, s)$ are constants independent of φ, the series converges uniformly to a finite value for any $\lambda \in \Lambda$ and for any $\varphi \in B$. Thus we see that S_{λ} is a distribution.

Furthermore S_{λ} is continuous from Λ into $\mathfrak{D}_{x}^{\prime}$. For $\mathscr{F}^{-1}\left(T_{\lambda t}\right)(\zeta)$ is a continuous function on Λ into $C(\{\zeta \mid\|\zeta\| \leqq k\})$ for any $k>0$. Hence the continuity of S_{λ} follows from the above-mentioned construction of $\left\{U_{t j}(q(\lambda))\right\}$. Moreover from the step 3 it shows that

$$
P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial x}, \lambda\right) S(\lambda)=T(\lambda)
$$

and that $S(\lambda)=0$ whenever $T(\lambda)=0$.

[^0]: 1) B. Malgrange: Equations aux dérivées partielles à coefficients constants. I, II, C. R. Acad. Sci., Paris, 237 (1953), 238 (1954). L. Hörmander: On the theory of general partial differential operators, Acta Math., 94 (1955). L. Ehrenpreis: The division problem for distributions, Proc. Nat. Acad. Sci., 41 (1955).
 2) F. Tréves: Solution élémentaire d'équations aux dérivées partielles dépendant d'un paramètre, C. R. Acad. Sci., Paris, 242 (1956).
