93. On Solutions of a Partially Differential Equation with a Parameter

By Taira SHIROTA

Osaka University

(Comm. by K. KUNUGI, M.J.A., June 12, 1956)

Let $P\left(\frac{\partial}{\partial x},\lambda\right)$ be a polynomial of derivations $\sum_{|p|\leq m} a_p(\lambda) \frac{\partial^p}{\partial x^p}$ defined in \mathbb{R}^n and with a parameter λ , where $a_p(\lambda)$ are complex valued continuous functions on a separable and locally compact space Λ and where the degrees of polynomials $P(\xi,\lambda)$ are independent of $\lambda \in \Lambda$. Then we consider the existence of distribution solution, which is continuous with respect to $\lambda \in \Lambda$, of the partially differential equation

$$P\left(\frac{\partial}{\partial x}, \lambda\right) S_{x}(\lambda) = T_{x}(\lambda), \qquad (1)$$

where $T_x(\lambda)$ is a given continuous function on Λ into a distribution space.

In the special case in this direction where Λ consists of a point, many interesting results are obtained by B. Malgrange, L. Hörmander and L. Ehrenpreis.¹⁾ Furthermore recently F. Tréves²⁾ considered the case where $T_x(\lambda) = \delta$. Here we prove more general theorems applying considerations of these author's.

Theorem 1. For any continuous function $T_x(\lambda)$ on Λ into \mathfrak{D}'_x there is a solution $S_x(\lambda)$ of the equation (1) where $S_x(\lambda)$ is a continuous function on Λ into \mathfrak{D}'_x and where $S_x(\lambda)=0$ whenever $T_x(\lambda)=0$.

Theorem 2. Under the same assumption of Theorem 1, if $S_x(\lambda)$ is a continuous solution such that

$$P\left(\frac{\partial}{\partial x},\lambda\right)S_x(\lambda) = T_x(\lambda) \quad \text{for } \lambda \in \Lambda_0 \tag{2}$$

where Λ_0 is a closed subspace of Λ , then there is a continuous solution $S'_n(\lambda)$ of (1) defined over Λ such that

$$S'_x(\lambda) = S(\lambda) \quad for \ \lambda \in \Lambda_0.$$
 (3)

Furthermore we may replace \mathfrak{D}'_x by \mathcal{E}_x , that is, we can prove the following

¹⁾ B. Malgrange: Equations aux dérivées partielles à coefficients constants. I, II, C. R. Acad. Sci., Paris, **237** (1953), **238** (1954). L. Hörmander: On the theory of general partial differential operators, Acta Math., **94** (1955). L. Ehrenpreis: The division problem for distributions, Proc. Nat. Acad. Sci., **41** (1955).

²⁾ F. Tréves: Solution élémentaire d'équations aux dérivées partielles dépendant d'un paramètre, C. R. Acad. Sci., Paris, **242** (1956).

T. SHIROTA

Theorem 3. For any continuous function $f(x, \lambda)$ on Λ into \mathcal{E}_x , there is a solution $g(x, \lambda)$ such that

$$P\left(\frac{\partial}{\partial x}, \lambda\right)g(x, \lambda) = f(x, \lambda) \tag{4}$$

where $g(x, \lambda)$ is a continuous function on Λ into \mathcal{E}_x .

Moreover if $g(x, \lambda)$ is a continuous solution such that

 $P\left(\frac{\partial}{\partial x},\lambda\right)g(x,\lambda)=f(x,\lambda) \quad for \ \lambda \in \Lambda_0$

where Λ_0 is a closed subspace of Λ , then we can find a continuous extension $g'(x, \lambda)$ of the equation (4) over all $\lambda \in \Lambda$.

Theorem 2 immediately follows from Theorem 1. To show this, let $S(\lambda)$ be a continuous solution satisfying (2). Then by Theorem 1, there is a continuous solution $S'(\lambda)$ of (1). Let $S''(\lambda)$ be a continuous extension³⁰ of $S(\lambda) - S'(\lambda)$ over Λ . Since

$$P\Big(rac{\partial}{\partial x},\lambda\Big)(S(\lambda)-S'(\lambda))=0 \qquad ext{for } \lambda \in \Lambda_0,$$

by Theorem 1, there is a continuous solution $S'''(\lambda)$ such that

$$P\left(\frac{\partial}{\partial x},\lambda\right)S^{\prime\prime\prime}(\lambda)=P\left(\frac{\partial}{\partial x},\lambda\right)S^{\prime\prime}(\lambda),$$

and

$$S^{\prime\prime\prime}(\lambda)=0$$
 for $\lambda \in \Lambda_0$.

Let $S(\lambda)$ be $S'(\lambda) + S''(\lambda) - S'''(\lambda)$. Then $S(\lambda)$ is a solution of (1) which satisfies the equation (3).

The proof of Theorem 1.⁴⁾ 1. First of all we show that we have only to prove the case where Λ is compact and

 $P(\boldsymbol{\xi}, \boldsymbol{\lambda}) = \boldsymbol{\xi}_1^m + Q(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \cdots, \boldsymbol{\xi}_n, \boldsymbol{\lambda}) \tag{5}$

with the deg $\xi_1 Q(\xi, \lambda) < m$. For assume that in this case our theorem is proved. Then since Λ is separable and locally compact, there is a locally finite open covering $\{U_{\alpha}\}$ of Λ such that U_{α} is compact and such that for any $\alpha P_0(\xi_{\alpha}, \lambda) \neq 0$ for any $\lambda \in U_{\alpha}$ and for a fixed point $\xi_{\alpha} \in \mathbb{R}^n$, where P_0 is the principal part of P. Hence for any α by a coordinate transformation on $\mathbb{R}^n P(\xi, \lambda)$ assumes the abovementioned form. Furthermore let $\{f_{\alpha}\}$ be a partition of 1 with respect to $\{U_{\alpha}\}$. Then by the assumption there is for any α a continuous solution $S_{\alpha}(\lambda)$ such that

$$P(\xi, \lambda)S_{a}(\lambda) = f_{a}(\lambda)T_{a}(\lambda), \quad \lambda \in U_{a}$$

and

 $S(\lambda)=0$ for $\lambda \in$ some neighbourhood of the boundary of U_a . Thus setting $S_a(\lambda)=0$ for $\lambda \notin U_a$, we obtain the desired solution $\sum_a S_a(\lambda)$.

[Vol. 32,

³⁾ J. Dugundji: An extension of Tietze's theorem, Pacific J. Math., 1 (1951).

⁴⁾ The proof of Theorem 3 may be accomplished by using the duality of ε and ε' and is similar to, but simpler than the proof of Theorem 1. Therefore we shall omit the proof.

No. 6] On Solutions of a Partially Differential Equation with a Parameter

2. From now on we assume that Λ is compact and $P(\xi, \lambda)$ assumes the form described in (5). Now we decompose T_{λ} as follows. Let $\{d_t | t=1, 2, \dots\}$ be a monotone increasing sequence such that for open sets $O_0 = \{x \mid ||x|| < 1\}$ and $O_t = \{x \mid ||x|| < t+1 \& x_i > d_t, i=1,$ 2,..., n}, $\sum_{i=0}^{\infty} O_i$ contains a proper open cone with vertex O and center $\{x \mid x_i = x_j > 0, i, j = 1, 2, \dots, n\}$. Then there is a finite number of regular transformations $\Sigma_1 = I, \Sigma_2, \cdots, \Sigma_i$ such that $U \Sigma_j(O_i) + O_0 = R^n$. $i=1,2,\cdots, j=1,2,\cdots, l$ Let $\{f_{ji}\}$ be a partition of 1 with respect to the covering and let $T_{\lambda ji} = f_{ji} T_{\lambda}$. Furthermore let $T_{\lambda 1} = \sum_{i=1}^{\infty} T_{\lambda 1i}$ and let $T_{\lambda j} = \sum_{i=1}^{\infty} T_{\lambda ji}$. Then we have only to prove the theorem for the case where the right hand side of (1) is $T_{\lambda 1}$, that is, the case where the carrier of T_{λ} is contained in $\bigcup_{i=0}^{\infty} O_i$. For let $T'_{\lambda j}(\varphi) = T_{\lambda j}(\varphi(\Sigma_j^{-1} \cdot))$. Then the carrier of $T'_{\lambda j}$ is contained in $\bigcup_{i=1}^{\infty} O_i$. Thus if there are solutions $S'_{\lambda j}$ such that $P\left(\frac{\partial}{\partial x}, \lambda\right)S'_{\lambda j} = T'_{\lambda j}$, setting $S_{\lambda j}(\varphi) = S'_{\lambda j}(\varphi(\Sigma_j \cdot))$, we obtain the desired solution $\sum_{i} S_{\lambda j}$.

3.5) From now on we restrict our argument to the case where the right hand side of our equation (1) is $T_{\lambda} = \sum_{t=0}^{\infty} T_{\lambda t}$ with carriers (of $T_{\lambda t} \subset O_t$). Then $T_{\lambda t}$ are continuous functions on Λ into $\mathcal{E}'_x(O_t)$. Since $\{T_{\lambda t} \mid \lambda \in \Lambda\}$ is compact in $\mathcal{E}'_x(O_t)$, for any t there are an integer s_t and a number k_t such that

$$T_{\lambda t} = P_{\lambda t} \left(\frac{\partial}{\partial x} \right) f_{\lambda t}$$

where deg $P_{\lambda t} \leq s_t$, $\int |f_{\lambda t}| dx \leq k_t$ and the carrier of $f_{\lambda t} \subset O_t$.

Now let r be a positive number and let $\varphi_r(\xi)$ be the unique positive solution of the equation $2r\eta = \log(\xi^2 + \eta^2)$ for real $\xi(|\xi| \ge \sqrt{e})$. Then we denote by $\gamma(r)$ the curve in C' defined by

$$\eta = \varphi_r(\xi) \qquad \text{for } |\xi| > \sqrt{e} \\ \eta = \varphi_r(\sqrt{e}) \qquad \text{for } |\xi| \le \sqrt{e} \ (\varphi_0(\xi) = 0)$$
 (6)

where $\zeta = \xi + i\eta$. Furthermore let $r_t = \frac{d_t}{b_t}$, where b_t is chosen sufficiently large such that

(i)
$$\{r_t\}$$
 is monotone decreasing and $r_t \leq a$
for sufficiently small positive number a , and (7)
(ii) $\sum_{t=1}^{\infty} k_t (\exp(-\varphi_{r_t}(\sqrt{e})) + r_t) < \infty$.

⁵⁾ The idea of the step 3 is the same as one of Ehrenpreis, but I obtained this natural idea independently of him.

Then for any $\varphi \in \mathfrak{D}_{x}$,

$$egin{aligned} T_{\lambda}(arphi) =& \sum_{t=0}^{\infty} T_{\lambda t}(arphi) = \sum_{t=0}^{\infty} \int_{R^n} \mathfrak{F}^{-1}(T_{\lambda t})(\mathfrak{F}) \mathfrak{F}(arphi)(\mathfrak{F}) d\mathfrak{F} \ =& \int_{R^n} \mathfrak{F}^{-1}(T_{\lambda 0})(\mathfrak{F}) \mathfrak{F}(arphi)(\mathfrak{F}) d\mathfrak{F} + \sum_{t=1}^{\infty} \int_{ au(r_t)^n} \mathfrak{F}^{-1}(T_{\lambda t})(\boldsymbol{\zeta}) \mathfrak{F}(arphi)(\boldsymbol{\zeta}) d(\boldsymbol{\zeta}). \end{aligned}$$

For $\mathfrak{F}^{-1}(T_{\lambda t})(\zeta)\mathfrak{F}(\varphi)(\zeta)$ is an entire analytic function on C^n ,

$$|\mathfrak{F}^{-1}(T_{\lambda t})(\zeta)| \leq k_t (1+|\zeta|^{s_t}) \exp\left(-d_t |\eta|\right) \tag{8}$$

and

 $|\mathfrak{F}(\varphi)(\zeta)| \leq M(\varphi, s)(1+|\zeta|)^{-s} \exp(|l|\eta|)$

for any ζ with $\eta_i \geq 0$ $(i=1, 2, \dots, n)$ and for any integer s > 0. Hence it is a consequence of Cauchy's integral theorem.

4. Let q be a continuous function Λ into R^{\prime} such that $q(\lambda) = \{a_{p}(\lambda)\}$ and let $P'(\xi, q(\lambda)) = P(\xi, \lambda)$. Then $P'(\xi, \lambda')$ may be extended over a relatively compact open set Λ' of $R^{\prime'}$. For any $j (=1, 2, \cdots, 3m-1)$ let Q_{ij} be the neighbourhood of $\gamma(r_{t}) + 2ji$ with radius 1 and let $U_{tj} = \{(\zeta^{*}, \lambda) \mid P'(\zeta_{1}, \zeta^{*}, \lambda) = 0$ implies $\zeta_{1} \notin \overline{Q_{ij}}\}$ where $\zeta^{*} \in \gamma(r_{t})^{n-1}$ and $\lambda' \in \Lambda'$. Then from the form (5) of $P'(\xi, \lambda')$, $\{U_{ij} \mid j=1, 2, \cdots, 3m-2\}$ is an open covering of $\gamma(r_{t})^{n-1} \times \Lambda'$. Now let $p_{t}(\zeta)$ be the projection $(p_{t}(\zeta) = \xi)$ from $\gamma(r_{t})^{n-1}$ onto R^{n-1} and let $p'(\zeta, \lambda') = (p(\zeta), \lambda')$. Then $\{p'(U_{ij})\}$ is an open covering of $R^{n-1} \times \Lambda'$. Accordingly there is a locally finite partition $\{U_{iji} \mid j=1, 2, \cdots, 3m-2, i=1, 2, 3, \cdots\}$ of $R^{n-1} \times \Lambda'$ such that any U_{iji} is an open rectangle whose sides are not parallel to R^{n-1} and such that $U_{tji} \subset P'(U_{j})$. Let $U_{tji}(\lambda')$ be $\{\xi \mid (\xi, \lambda') \in U_{tji}\}$, then mes $(U_{tji}(\lambda'_{1}) \perp U_{tji}(\lambda'_{2})) \rightarrow 0$ when $\lambda'_{1} \rightarrow \lambda'_{2}$ and mes $(R^{n-1} - \bigcup_{ji} U_{iji}(\lambda')) = 0$ for any $\lambda' \in \Lambda'$. Furthermore let $p_{t}^{-1} \left(\sum_{i=1}^{\infty} U_{iji}(\lambda')\right) =$ $W_{ti}(\lambda')$.

Finally let $S_{\lambda tj}(\varphi)$ be

$$\int_{W_{tj}(q(\lambda))} d\zeta^* \int_{\Upsilon(r_t)} \frac{\widetilde{v}^{-1}(T_{\lambda t})(\zeta_1 + 2ji, \zeta^*) \widetilde{v}(\varphi)(\zeta_1 + 2ji, \zeta^*)}{P(\zeta_1 + 2ji, \zeta^*, \lambda)} d\zeta_1$$

and let $S_{\lambda}(\varphi) = \sum_{t=0}^{\infty} \sum_{j=1}^{3m-2} S_{\lambda t j}(\varphi)$. Then $S_{\lambda}(\varphi)$ is an absolutely convergent series and uniformly bounded for any $\varphi \in B \subset \mathfrak{D}_x$ where *B* is any bounded set in \mathfrak{D}_x . For $P(\zeta_1 + 2ji, \zeta^*, \lambda) \ge 1$ for any $(\zeta_1, \zeta^*, \lambda) \in \gamma(r_t)$ $\times W_{t j}(q(\lambda))$, therefore we may consider the series

$$\sum_{\iota j} \int_{\gamma(r_t)^{q_t-1}} d\zeta^* \int_{\gamma(r_t)} |\mathfrak{F}^{-1}(T_{\lambda t})\mathfrak{F}(\varphi)| (\zeta_1 + 2ji, \zeta^*) d\zeta_1.$$

But from (6), (7), (8) and

 $|\mathfrak{F}\varphi(\zeta)| \leq M(B,s)(1+|\zeta|)^{-s} \exp(l|\eta|)$ for any $\varphi \in B$,

where s is any positive integer and where l and M(B, s) are constants independent of φ , the series converges uniformly to a finite value for any $\lambda \in \Lambda$ and for any $\varphi \in B$. Thus we see that S_{λ} is a distribution. Furthermore S_{λ} is continuous from Λ into \mathfrak{D}'_{x} . For $\mathfrak{F}^{-1}(T_{\lambda t})(\zeta)$ is a continuous function on Λ into $C(\{\zeta \mid || \zeta || \leq k\})$ for any k > 0. Hence the continuity of S_{λ} follows from the above-mentioned construction of $\{U_{tj}(q(\lambda))\}$. Moreover from the step 3 it shows that

$$P\left(\frac{1}{-2\pi i}\frac{\partial}{\partial x},\lambda\right)S(\lambda)=T(\lambda)$$

and that $S(\lambda)=0$ whenever $T(\lambda)=0$.