128. Ideal Theory of Semiring

By Kiyoshi IséKI Kobe University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

Quite recently, some writers have considered a non-commutative lattice which is a generalisation of the notion of lattices and have shown that the theory of non-commutative lattices are very useful for the theoretic physics. On the other hand, any semirings we shall develop are considered as a extensive generalisation of a noncommutative case for distributive lattices. In this paper, we shall develop the ideal theory of a semiring¹⁾ and consider a structure space of a semiring.

Let R be a semiring. Unless otherwise stated, the word *ideal* shall mean two-sided ideal.

Definition 1. An ideal P is prime, if and only if $AB \subset P$ for any two ideals A, B implies $A \subset P$ or $B \subset P$.

Definition 2. An ideal I is *irreducible*, if and only if $A \frown B = I$ for two ideals A, B implies A = I or B = I.

Definition 3. An ideal S is strongly irreducible, if and only if $A \cap B \subset S$ for any two ideals A, B implies $A \subset S$ or $B \subset S$.

A notion of strongly irreducible ideals was introduced by L. Fuchs [5] who calls *primitive*. In his paper [2], R. L. Blair used a terminology strongly irreducible. We shall follow his terminology.

From $AB \subset A \cap B$ for any two ideals A, B, any prime ideals are strongly irreducible and any strongly irreducible ideals are irreducible.

Theorem 1. The following conditions are equivalent.

(1) P is a prime ideal.

(2) If (a), (b) are principal ideals²⁾ and (a)(b) $\subseteq P$, then $a \in P$ or $b \in P$.

(3) $aRb \subset P$ implies $a \in P$ or $b \in P$.

(4) If I_1 , I_2 are right ideals and $I_1I_2 \subset P$, then $I_1 \subset P$ or $I_2 \subset P$.

(5) If I_1 , I_2 are left ideals and $J_1J_2 \subset P$, then $J_1 \subset P$ or $J_2 \subset P$.

Theorem 1 was proved by N. H. McCoy [10] for the case of rings.

Proof. It is clear that (1) implies (2). To prove that (2) implies (3), let $aRb \subset P$, then $RaRbR \subset P$, and hence we have $(a)^2(b)^3 \subset P$. This implies $a \in P$ or $b \in P$.

To prove that (3) implies (4), let $I_1I_2 \subset P$ for right ideals I_1 , I_2

¹⁾ For the detail of a semiring, see K. Iséki and Y. Miyanaga [8].

^{2) (}a) denotes the principal two-sided ideal generated by a.

and suppose $I_1 \oplus P$. There is an element a of I_1 not in P. Then, for every element b of I_2 ,

$$aRb \subset I_1 \cdot I_2 \subset P.$$

Hence, from (3), $b \in P$ and this shows $I_2 \subset P$. Similarly, we can prove that (3) implies (5). It is trivial that (4) or (5) implies (1).

Following N. H. McCoy, we shall define *m*-system as follows: A subset *M* of *R* is an *m*-system, if and only if $a, b \in M$ implies that there is an element *x* of *R* such that $axb \in M$.

Then we have

Corollary 1. An ideal P is prime if and only if the set complement of P in R is an m-system.

Proof. Let P be a prime ideal, and let P' be the set complement of P. Suppose that $axb \in P'$ for some a, b of P' and every element x of R. By Theorem 1, (3), we have $a \in P$ or $b \in P$, which is a contradiction. Hence P' is an m-system. Conversely, let M be an m-system, and let $axb \in R-M$ for every element x of R. Suppose that $a, b \in M$, then, since M is an m-system, there is an element x such that $axb \in M$. Hence $a \in R-M$ or $b \in R-M$.

Following R. L. Blair [2], we shall define an *i*-system. A set M of R is an *i*-system if and only if $a, b \in M$ implies that $(a) \frown (b) \frown M$ is not empty.

By an argument of Theorem 1 and Corollary 1, or the technique of R. L. Blair [2], we can prove the following

Theorem 2. The following conditions are equivalent for an ideal S. (1) S is a strongly irreducible ideal.

(2) $(a) \frown (b) \subseteq S$ implies $a \in S$ or $b \in S$.

(3) The set complement of S in R is an i-system.
The following term for rings was introduced by L. Fuchs [5].
Definition 4. A semiring R is said to be arithmetic, if, for ideals

A, B and C,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

The identity $A \smile (B \frown C) = (A \smile B) \frown (A \smile C)$ is equivalent to $A \frown (B \smile C) = (A \frown B) \smile (A \frown C)$. Then we have the following

Theorem 3. In any arithmetic semiring R, an ideal of R is irreducible, if and only if, it is strongly irreducible.

Proof. Let A, B and C be ideals of R and suppose that $A \frown B \subset C$. Then, for $C_1 = C \smile A$, $C_2 = C \smile B$, we have

$$C_1 \frown C_2 = (C \smile A) \frown (C \smile B) = C \smile (A \frown B) = C.$$

If C is irreducible, then $C_1 = C$ or $C_2 = C$. Hence $A \subset C$ or $B \subset C$. Therefore C is a strongly irreducible ideal.

Conversely, in a semiring R any strongly irreducible ideals are irreducible. This completes the proof.

In particular, we have the following

Theorem 4. In a distributive lattice, an ideal is irreducible, if and only if, it is strongly irreducible.

By a theorem of G. Birkhoff and O. Frink [1] (see also K. Iséki [6, 7]), we have the following

Theorem 5. In a distributive lattice, prime ideals, irreducible ideals and strongly irreducible ideals are same.³

For any semiring R, we shall prove the following

Theorem 6. Any ideal is the intersection of all irreducible ideals containing it.

Proof. Let A be an ideal of R, and let $\{A_{\alpha}\}$ be the set of all irreducible ideals containing A. Since R is an irreducible ideal, $\{A_{\alpha}\}$ is a non-empty family. Then it is clear that $A \subset \bigcap_{a} A_{\alpha}$. To prove that $A \supset \bigcap_{a} A_{\alpha}$, it is sufficient to show the following

Lemma. If a is a non-zero element of R, and A is an ideal not containing a, then there is an irreducible ideal B containing A but not a.

To prove Lemma, we shall use the transfinite induction or Zorn's lemma. Let $\{B_a\}$ be the set of all ideals containing A but not a. Since the family $\{B_a\}$ contains A, it is non-empty. By Zorn's lemma, we can find an ideal B which is maximal with respect to the conditions: B contains A and B does not contain the element a. Then the ideal B is irreducible. Suppose that $B=C_1 \frown C_2$, then, since Bdoes not contain a, at least one of C_1 , C_2 does not contain a. If $C_1 \ni a$, then, the construction of B and $B \boxdot C_1$, we have $B=C_1$. Therefore B is an irreducible ideal and the proof of Lemma is complete. This shows that Theorem 6 holds true.

Theorem 7. If any irreducible ideal of a semiring R is strongly irreducible, then R is arithmetic.

Proof. Let A, B and C be ideals of R. Then we have $A \cup (B \cap C) \subset (A \cup B) \cap (A \cap C)$.

If I is any irreducible ideal containing $A \cup (B \cap C)$, then we have $A \subset I$ and $B \cap C \subset I$. By the assumption, I is strongly irreducible and hence $B \subset I$ or $C \subset I$. Therefore $A \cup B \subset I$ or $A \cup C \subset I$, and we have $(A \cup B) \cap (A \cap C) \subset I$. By Theorem 6, $(A \cup B) \cap (A \cap C) \subset A \cup (B \cap C)$. The proof is complete.

Further, we have the following

Corollary 2. In an arithmetic semiring, any ideal is the intersection of all strongly irreducible ideals containing it.

In our papers [8, 9] we considered the structure spaces \mathfrak{M} and \mathfrak{P} of a commutative semiring with a unit 1. In the next section, we shall consider a structure space \mathfrak{S} of all strongly irreducible ideals of a commutative semiring with 1.

³⁾ For the ideal theory in distributive lattices, see A. A. Monteiro [11].

No. 8]

In our previous discussion, the commutativity is not essential. However for brief we shall assume the commutativity of R. Clearly $\mathfrak{M} \subset \mathfrak{P} \subset \mathfrak{S}$. For the theory of structure spaces for narings and Boolean algebras, see E. A. Behrens [3, 4] and C. Pauc [12].

Let \mathfrak{S} be the set of all strongly irreducible ideals of R. To give a topology σ on \mathfrak{S} , we shall take $\sigma_x = \{S \mid x \in S, S \in \mathfrak{S}\}$ for every x of Ras an open base of \mathfrak{S} . First of all, we shall show the following

Theorem 8. Let \mathfrak{A} be a subset of \mathfrak{S} , then we have

$$\mathfrak{A} = \{S' \mid \bigcap_{s \in \mathfrak{M}} S \subset S' \text{ and } S' \in \mathfrak{S}\}$$

where \mathfrak{A} is the closure of \mathfrak{A} by σ .

Proof. Let \mathfrak{B} be $\{S' \mid \bigcap_{s \in \mathfrak{A}} S \subset S' \text{ and } S' \in \mathfrak{S}\}$ and let $S' \in \mathfrak{B}$. Let σ_x be an open base of S', then, by the definition of the topology σ , $x \in S'$. Hence we have $x \in \bigcap_{s \in \mathfrak{A}} S$. It follows from this that there is a strongly irreducible ideal S of \mathfrak{A} such that x is not contained in S. Hence $\sigma_x \ni S$. Therefore $S' \in \overline{\mathfrak{A}}$ and $\mathfrak{B} \subset \overline{\mathfrak{A}}$.

To prove $\mathfrak{B} \supset \overline{\mathfrak{A}}$, take a strongly irreducible ideal S' such that $S' \in \mathfrak{B}$. Then $\bigcap_{S \in \mathfrak{A}} S - S'$ is not empty. For an element x of $\bigcap_{S \in \mathfrak{A}} S - S'$, we have $x \in S$ ($S \in \mathfrak{A}$) and $x \in S'$. Hence $\sigma_x \ni S'$ and $\sigma_x \ni S$ for all S of \mathfrak{A} . Therefore $\mathfrak{A} \frown \sigma_x = 0$ and then we have $S' \in \overline{\mathfrak{A}}$. Hence $\mathfrak{B} \supset \overline{\mathfrak{A}}$. The proof of Theorem 8 is complete.

Now we shall prove that the topological space \mathfrak{S} for the topology σ is a compact T_0 -space.

To prove that \mathfrak{S} is a T_0 -space, it is sufficient to verify the following conditions:

- (1) $\mathfrak{A} \subseteq \overline{\mathfrak{A}}$.
- (2) $\overline{\mathfrak{A}} = \overline{\mathfrak{A}}.$
- (3) $\overline{\mathfrak{A}} \cup \mathfrak{B} = \overline{\mathfrak{A}} \cup \overline{\mathfrak{B}}.$
- (4) $\overline{S}_1 = \overline{S}_2$ implies $S_1 = S_2$.

The conditions (1) and (2) are clear, and $\mathfrak{A} \smile \mathfrak{B}$ implies $\overline{\mathfrak{A}} \subset \overline{\mathfrak{B}}$. From this relation, we have $\overline{\mathfrak{A}} \smile \overline{\mathfrak{B}} \subset \overline{\mathfrak{A} \smile \mathfrak{B}}$. For some element S of $\overline{\mathfrak{A} \smile \mathfrak{B}}$, suppose that $S \in \overline{\mathfrak{A}}$ and $\overline{S} \in \mathfrak{B}$. From Theorem 8, we have

and
$$S \stackrel{\cap}{\Rightarrow} \bigcap_{\substack{S' \in \mathfrak{N} \\ S' \in \mathfrak{N}}} S' = S_{\mathfrak{N}}$$
.

Su and $S_{\mathfrak{B}}$ are ideals. If $S_{\mathfrak{A}} \frown S_{\mathfrak{B}} \subset S$, by the definition of S, $S_{\mathfrak{A}} \subset S$ or $S_{\mathfrak{B}} \subset S$. Hence $S \Rightarrow S_{\mathfrak{A}} \frown S_{\mathfrak{B}} = S_{\mathfrak{A} \smile \mathfrak{B}}$. This shows $S \in \widetilde{\mathfrak{A} \smile \mathfrak{B}}$.

To prove that $\overline{S}_1 = \overline{S}_2$ implies $S_1 = S_2$, we shall use the condition (1). Then $\overline{S}_1 \ni S_2$ and by the definition of closure operation, we have $S_1 \subset S_2$. Similarly we have $S_1 \supset S_2$ and $S_1 = S_2$. Therefore we complete the proof that \mathfrak{S} is a T_0 -space.

We shall prove that \mathfrak{S} is a compact space. Let \mathfrak{A}_{λ} be a family of closed sets with empty intersection. Let $S_{\mathfrak{A}_{\lambda}} = \bigcap_{S \in \mathfrak{A}_{\lambda}} S$, suppose that $\sum_{\lambda} S_{\mathfrak{A}_{\lambda}} \neq S$, then there is a maximal ideal M containing the ideal $\sum_{\lambda} S_{\mathfrak{A}_{\lambda}} = S$, then there is a maximal ideal M containing the ideal $\sum_{\lambda} S_{\mathfrak{A}_{\lambda}}$. Therefore we have $S_{\mathfrak{A}_{\lambda}} \subset M$ for every λ . By the definition of $S_{\mathfrak{A}}, \mathfrak{A}_{\lambda} \ni M$ for every λ . Hence $\bigcap_{\lambda} \mathfrak{A}_{\lambda} \ni M$, which contradicts our hypothesis of \mathfrak{A}_{λ} . Therefore $\sum_{\lambda} S_{\mathfrak{A}_{\lambda}} = R$. Hence the unit 1 of R can be expressed by the sum of elements a_{i} of some $S_{\mathfrak{A}_{\lambda_{i}}}$ ($i=1,2,\cdots,n$): $1 = \sum_{i=1}^{n} a_{i}(a_{i} \in S_{\mathfrak{A}_{\lambda_{i}})$. Hence we have $R = \sum_{i=1}^{n} S_{\mathfrak{A}_{\lambda_{i}}}$. If $\bigcap_{i=1}^{n} \mathfrak{A}_{\lambda_{i}}$ is non-empty, for every strongly irreducible ideal S of $\bigcap_{i=1}^{n} \mathfrak{A}_{\lambda_{i}}, S \supset S_{\mathfrak{A}_{\lambda_{i}}}$ ($i=1,2,\cdots,n$) and $S \supset \sum_{i=1}^{n} S_{\mathfrak{A}_{\lambda_{i}}}$. If $\bigcap_{i=1}^{n} \mathfrak{A}_{\lambda_{i}} = R$, we can prove easily that \mathfrak{S} is a compact space. If $\bigcap_{i=1}^{n} \mathfrak{A}_{\lambda_{i}}$ contains a proper strongly irreducible ideal S, we have $S \supset \sum_{i=1}^{n} S_{\mathfrak{A}_{\lambda_{i}}}$, which is a contradiction to $R = \sum_{i=1}^{n} S_{\mathfrak{A}_{\lambda_{i}}}$. Therefore $\bigcap_{\lambda_{i}=1}^{n} \mathfrak{A}_{\lambda_{i}} = 0$. Hence \mathfrak{S} is a compact space.

Theorem 9. The structure space \mathfrak{S} with the topology σ is compact T_0 -space.

By the representation theory of a semiring, we shall prove the converse of Corollary 2. It is sufficient to show that the lattice of ideals of R is isomorphic with the lattice of some closed sets of \mathfrak{S} . Since each ideal A is the intersection of all strongly irreducible ideals A_x containing A, the correspondence $A \to \{A_a\}$ is one-to-one, and by the definition of the topology σ , the set $\{A_a\}$ is closed in \mathfrak{S} . Hence, the mapping $A \to \{A_a\}$ gives a lattice isomorphism between the lattice of ideals of R and a lattice of some closed sets of \mathfrak{S} . Therefore we have

Theorem 10. The lattice of ideals of R is distributive, if and only if each ideal is the intersection of all strongly irreducible ideals containing it.

In my paper [9], we introduced the notions of the \mathfrak{M} -radical and the \mathfrak{P} -radical of a semiring. By a similar way, we shall define \mathfrak{S} -radical of a semiring.

Definition 4. By the \mathfrak{S} -radical $r(\mathfrak{S})$ of a semiring, we mean the intersection of all strongly irreducible ideals of it, i.e. $\bigcap_{n \in \mathfrak{S}} S$.

From $\mathfrak{M} \subset \mathfrak{P} \subset \mathfrak{S}$, we have $r(\mathfrak{M}) \supset r(\mathfrak{P}) \supset r(\mathfrak{S})$.

Theorem 11. The subset \mathfrak{P} of \mathfrak{S} is dense in \mathfrak{S} , if and only if $r(\mathfrak{P})=r(\mathfrak{S})$.

No. 8]

Proof. Let
$$\overline{\mathfrak{P}} = \mathfrak{S}$$
 for the topology σ , then we have $\{S \mid \bigcap_{P \in \mathfrak{P}} P \subset S\} = \mathfrak{S}.$

Hence, we have

$$r(\mathfrak{P}) = \bigcap_{P \in \mathfrak{P}} P \subset \bigcap_{S \in \mathfrak{S}} S = r(\mathfrak{S}).$$

On the other hand, $r(\mathfrak{P}) \supset r(\mathfrak{S})$. This shows $r(\mathfrak{S}) = r(\mathfrak{P})$.

Conversely, suppose that $\mathfrak{S}-\mathfrak{P}$ is non-empty, then there is a strongly irreducible ideal S such that $S \in \mathfrak{P}$ and $S \in \mathfrak{S}$. Therefore there is a neighbourhood σ_x of S which does not meet \mathfrak{P} . Hence $r(\mathfrak{S}) = \bigcap_{S \in \mathfrak{S}} S$ is a proper subset of $\bigcap_{P \in \mathfrak{P}} P$, and we have $r(\mathfrak{S}) \neq r(\mathfrak{P})$.

Corollary 3. The subset \mathfrak{M} of \mathfrak{S} is dense in \mathfrak{S} , if and only if $r(\mathfrak{M})=r(\mathfrak{S})$.

Corollary 4. Let R be a semiring with 0. If 0 is the zero ideal (0) and R is \mathfrak{M} -semisimple, \mathfrak{M} and \mathfrak{P} are dense in \mathfrak{S} .

References

- G. Birkhoff and O. Frink: Representations of lattices by sets, Trans. Am. Math. Soc., 64, 299-316 (1948).
- [2] R. L. Blair: Ideal lattices and the structure of rings, Trans. Am. Math. Soc., **75**, 136–153 (1953).
- [3] E. A. Behrens: Ein topologischer Beitrag zur Strukturtheorie nichtassoziativer Ringe, Math. Ann., 129, 297–303 (1955).
- [4] E. A. Behrens: Zur topologischen Darstellung nichtassoziativer Ringe, Archiv der Math., 7, 41-48 (1956).
- [5] L. Fuchs: Über die Ideale arithmetischer Ringe, Comm. Math. Helv., 23, 334– 341 (1949).
- [6] K. Iséki: Une condition pour qu'une lattice soit distributif, C. R. Acad. Sci., Paris, 230, 1727-1728 (1950).
- [7] K. Iséki: Contributions to lattice theory, Publ. Math. Debrecen, 2, 194–203 (1952).
- [8] K. Iséki and Y. Miyanaga: Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad., 32, 325–328 (1956).
- [9] K. Iséki: Notes on topological spaces. V. On structure spaces of semiring, Proc. Japan Acad., 32, 426–429 (1956).
- [10] N. H. McCoy: Prime ideals in general rings, Am. Jour. Math., 71, 823–833 (1949).
- [11] A. A. Monteiro: L'Arithmétique des filtres et les espaces topologiques, Symposium sobre algunos problemes matematicos en Latino América, 129–162 (1954).
- [12] C. Pauc: Darstellungs und Struktursätze für Boolesche Verbande und Verbande, Archiv der Math., 1, 29–41 (1948).