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Quite recently, some writers have considered a non-commutative
lattice which is a generalisation of the notion of lattices and have
shown that the theory of non-commutative lattices are very useful
for the theoretic physics. On the other hand, any semirings we
shall develop are considered as a extensive generalisation of a non-
commutative case for distributive lattices. In this paper, we shall
develop the ideal theory of a semiring) and consider a structure
space of a semiring.

Let R be a semiring. Unless otherwise stated, the word ideal
shall mean two-sided ideal.

Definition 1. An ideal P is prime, if and only if ABP for
any two ideals A, B implies AP or BP.

Definition 2. An ideal I is irreducible, if and only if AB=I
for two ideals A, B implies A=I or B=L

Definition 3. An ideal S is strongly irreducible, if and only if
ABC:S for any two ideals A, B implies AS or BS.

A notion of strongly irreducible ideals was introduced by L.
Fuchs [5] who calls primitive. In his paper [2, R. L. Blair used
a terminology strongly irreducible. We shall follow his terminology.

From ABAB for any two ideals A, B, any prime ideals are
strongly irreducible and any strongly irreducible ideals are irreducible.

Theorem 1. The following conditions are equivalent.
(1) P is a prime ideal.
(2) If (a), (b) are principal ideals and (a)(b)P, then a P or
beP.
(3) aRb P implies a eP or b e P.
( 4 ) If I, L. are right ideals and IL. P, then I P or I P.
(5) If I, L. are left ideals and JJ P, then J P or J.P.

Theorem 1 was proved by N. H. McCoy [10 for the case of
rings.

Proof. It is clear that (1) implies (2). To prove that (2)implies
(3), let aRb P, then RaRbR P, and hence we have (a)(b) P.
This implies a eP or b e P.

To prove that (3) implies (4), let IL.P for right ideals I, I
1) For the detail of a semiring, see K. Isdki and Y. Miyanaga [8].
2) (a) deaotes the principal two-sided ideal generated by a.
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and suppose IP. There is an element a of I not in P. Then,
for every element b of

aRb I I. P.
Hence, from (3), bP and this shows L.c._: P. Similarly, we can prove
that (3) implies (5). It is trivial that (4) or (5) implies (1).

Following N. H. McCoy, we shall define m-system as follows:
A subset M of R is an m-system, if and only if a, bM implies that
there is an element x of R such that axbeM.

Then we have
Corollary 1. An ideal P is prime if and only if the set comple-

ment of P in R is an m-system.
Proof. Let P be a prime ideal, and let P’ be the set complement

of P. Suppose that axbeP’ for some a, b of P’ and every element
x of R. By Theorem 1, (3), we have aeP or b eP, which is a
contradiction. Hence P’ is an m-system. Conversely, let M be an
m-system, and let axb R-M for every element x of R. Suppose
that a, b eM, then, since M is an m-system, there is an element x
such that axb e M. Hence a R-M or b eR-M.

Following R. L. Blair [2, we shall define an /-system. A set
M of R is an i-system if and only if a, beM implies that (a)(b)M
is not empty.

By an argument of Theorem 1 and Corollary 1, or the technique
of R. L. Blair [2J, we can prove the following

Theorem 2. The following conditions are equivalent for an ideal S.
(1) S is a strongly irreducible ideal.
( 2 ) (a)(b) S implies a S or b S.
(3) The set complement of S in R is an i-system.

The following term for rings was introduced by L. Fuchs [5.
Definition 4. A semiring R is said to be arithmetic, if, for ideals

A, B and C,
A(BC)-.(AB)(AC).

The identity A(BC)-(AB)(AC) is equivalent to
A(BC)--(AB)(AC). Then we have the following

Theorem 3. In any arithmetic semiring R, an ideal of R is
irreducible, if and only if, it is strongly irreducible.

Proof. Let A, B and C be ideals of R and suppose that ABC.
Then, for C=CA, C.-CB, we have

CIC-(CA)(CB)-C(AB)--C.
If C is irreducible, then C-C or C:-C. Hence AC or BC.
Therefore C is a strongly irreducible ideal.

Conversely, in a semiring R any strongly irreducible ideals are
irreducible. This completes the proof.

In particular, we have the following
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Theorem 4. In a distributive lattice, an ideal is irreducible, if
and only if, it is strongly irreducible.

By a theorem of G. Birkhoff and O. Frink [lJ (see also K. Iski
[6, 7), we have the following

Theorem 5. In a distributive lattice, prime ideals, irreducible
ideals and strongly irreducible ideals are same.)

For any semiring R, we shall prove the following
Theorem 6. Any ideal is the intersection of all irreducible ideals

containing it.
Proof. Let A be an ideal of R, and let [A} be the set of all

irreducible ideals containing A. Since R is an irreducible ideal, [A}
is a non-empty family. Then it is clear that A A. To prove

that A A, it is sufficient to show the following

Lemma. If a is a non-zero element of R, and A is an ideal not
containing a, then there is an irreducible ideal B containing A but not a.

To prove Lemma, we shall use the transfinite induction or Zorn’s
lemma. Let IBm} be the set of all ideals containing A but not a.
Since the family IBm} contains A, it is non-empty. By Zorn’s lemma,
we can find an ideal B which is maximal with respect to the condi-
tions: B contains A and B does not contain the element a. Then
the ideal B is irreducible. Suppose that B=CC, then, since B
does not contain a, at least one of C, C. does not contain a. If
C -a, then, the construction of B and BC, we have B=C, There-
fore B is an irreducible ideal and the proof of Lemma is complete.
This shows that Theorem 6 holds true.

Theorem 7. If any irreducible ideal of a semiring R is strongly
irreducible, then R is arithmetic.

Proof. Let A, B and C be ideals of R. Then we have
A(BC) C:._ (AB)(AC).

If I is any irreducible ideal containing A(BC), then we have
AI and BCL By the assumption, I is strongly irreducible
and hence BI or C/. Therefore ABI or ACI, and we
have (AB)(AC) I. By Theorem 6, (AB)(AC)A(BC).
The proof is complete.

Further, we have the following
Corollary 2. In an arithmetic semiring, any ideal is the intersec-

tion of all strongly irreducible ideals containing it.
In our papers [8, 9 we considered the structure spaces and

of a commutative semiring with a unit 1. In the next section,
we shall consider a structure space (R) of all strongly irreducible
ideals of a commutative semiring with 1.

3) For the ideal theory in distributive lattices, see A. A. Monteiro [11].
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In our previous discussion, the commutativity is not essential.
However for brief we shall assume the commutativity of R. Clearly
3C:(R). For the theory of structure spaces for narings and
Boolean algebras, see E. A. Behrens [_3, 4] and C. Pauc [12.

Let (R) be the set of all strongly irreducible ideals of R. To give
a topology on (R), we shall take ax- IS xS, Se (R)} for every x of R
as an open base of (R). First of all, we shall show the following

Theorem 8. Let be a subset of (R), then we have- [S’ S.S’ and S’

where I is the closure of ?I by a.

Proof. Let be [S’] SS’ and S’e} and let S’e. Let

a be an open base of S’, then, by the definition of the topology
xS’. Hence we have x S. It follows from this that there is a

strongly irreducible ideal S of such that x is not contained in S.
Hence aS. Therefore S’?I and 3.

To prove ?l, take a strongly irreducible ideal S’ such that
S’. Then S-S’ is not empty. For an element x of S--S’,
we have S (S) and S’. Hence. Therefore --0 and hen we have S’9. Henee . The
roof o Theorem 8 is complete.

Now we shall rove ha he oologieal saee or he opology
is a eomae 0-spaee.
To rove ha is a 0-saee, ig is sueien

ollowing conditions:

(2)
(a)
( 4 ) S S implies S-S.

The conditions (1)and (2) are clear, and I implies .
From this relation, we have 33. For some element S of, suppose that SI and S. From Theorem 8, we have

S S’-S
and S

S and S are ideals. If SSS, by the definition of S, SS
or S S. Hence S SS-S. This shows S

To prove that S=S implies S--S, we shall use the condition
(1). Then S S and by the definition of closure operation, we have



558 K. IS]KI [Vol. 32,

SS. Similarly we have SS. and S--S. Therefore we com-
plete the proof that (R) is a T0-space.

We shall prove that (R) is a compact space. Let Iz be a family
of closed sets with empty intersection. Let, S= S, suppose that

,SuS, then there is a maximal ideal M containing the ideal

,Suz. Therefore we have SuzM for every . By the definition

of Su, %M for every . Hence 2zM, which contradicts our

hypothesis of ?I. Therefore Su---R. Hence the unit I of R can

be expressed by the sum of elements a of some S (i-1,2,..., n):
1-- , a(a Sz). Hence we have R--] Sz. If ’I is non-empty,

il i-l i=l

for every strongly irreducible ideal S of z, SS, (i--1,2,..., n)
i=l

and S S. If --R, we can prove easily that (R) is a compact
i=1 i--1

space. If Q contains a proper strongly irreducible ideal S, we
i=1

have S,Sz, which is a contradiction to R--, S,z. Therefore
i=l i---1. I--0. Hence (R) is a compact space.

i=l

Theorem 9. The structure space (R) with the topology a is compact
To-space.

By the representation theory of a semiring, we shall prove the
converse of Corollary 2. It is sufficient to show that the lattice of
ideals of R is isomorphic with the lattice of some closed sets of (R).

Since each ideal A is the intersection of all strongly irreducible ideals
A containing A, the correspondence A-> {A} is one-to-one, and by
the definition of the topology a, the set {A} is closed in (R). Hence,
the mapping A-> {A} gives a lattice isomorphism between the lattice
of ideals of R and a lattice of some closed sets of (R). Therefore we
have

Theorem 10. The lattice of ideals of R is distributive, if and
only if each ideal is the intersection of all strongly irreducible ideals
containing it.

In my paper [.9J, we introduced the notions of the -radical
and the -radical of a semiring. By a similar way, we shall define
(R)-radical of a semiring.

Definition 4. By the (R)-radical r((R))of a semiring, we mean
the intersection of all strongly irreducible ideals of it, i.e. S.

From (R), we have r() r() r((R)).
Theorem 11. The subset of (R) is dense in (R), if and only if
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Proof. Let --(R) for the topology ., then we have

P
Hence, we have

r(3)-- P S-.r((R)).

On the other hand, r()r((R)). This shows r((R))--r().
Conversely, suppose that (R)- is non-empty, then there is a

strongly irreducible ideal S such that S and S. Therefore
there is a neighbourhood 6 o S which does not meet . Henee
r()- S is a proper subset of P, and we have r()r().

S P
Corollary 3. The subset of is dense in , if and only if

Corollary 4. Let R be a semiring with O. If 0 is the zero ideal
(0) and R is -semisimple, and are dense in .
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