127. On the B-covers in Lattices

By Yataro Matsushima
Gumma University, Maebashi
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1956)

Let L be a lattice. For any two elements a and b of L we shall define the following three kinds of sets:

$$
\begin{align*}
J(a, b) & =\{x \mid x=(a \frown x) \smile(b \frown x)\} \tag{1}\\
C(J(a, b)) & =\{x \mid x=(a \smile x) \frown(b \smile x)\} \tag{2}\\
B(a, b) & =J(a, b) \frown C(J(a, b)) . \tag{3}
\end{align*}
$$

$B(a, b)$ is called the B-cover of a and b. If $c \in B(a, b)$, we shall write $a c b$ simply.

In case L is a normed lattice, a point c is defined to be between two points a and b if $d(a, c)+d(c, b)=d(a, b)$, where $d(x, y)=|x \smile y|$ $-|x \frown y|$. Several lattice characterizations of this metric betweeness have been obtained by V. Glivenko [1], L. M. Blumenthal and D. O. Ellis [2] and the author [3]; namely c lies between a and b in the metric sense if and only if one of the following conditions is satisfied in the associated normed lattice L.

$$
\begin{align*}
& (a \frown c) \smile(b \frown c)=c=(a \smile c) \frown(b \smile c) \tag{G}\\
& (a \frown c) \smile(b \frown c)=c=c \smile(a \frown b) \tag{G*}\\
& (a \smile c) \frown(b \smile c)=c=c \frown(a \smile b) \tag{**}\\
& (a \smile(b \frown c)) \frown(b \smile c)=c .
\end{align*}
$$

Thus our definition of " $a c b$ " in an arbitrary lattice is a generalization of metric betweeness in a normed lattice. The notion of B-cover for a normed lattice is due to L. M. Kelley [4].

In Theorem 1 we shall assert that $(a] \smile(b]=J(a, b) \subset(a \smile b]$, $[a) \frown[b)=C(J(a, b)) \subset[a \frown b)$. In Theorem 2 we shall deal with the relations between the two B-covers $B(a, b)$ and $B(b, c)$.

In Theorem 3 we shall consider the necessary and sufficient condition (A) in order that L be a distributive lattice.

In Theorems 4 and 5, we shall give the structures of $B(a, b)$ by imposing algebraic restrictions on them. Theorem 4 gives a generalization of the important result obtained by L. M. Kelley.

Now let $x \in J(a, b)$, then we have $x \geqq x \frown(a \smile b) \geqq(a \frown x) \smile(b \frown x)=x$, hence we obtain $x \frown(a \smile b)=(a \frown x) \smile(b \frown x)$, that is $(a, x, b) D$. From $x \frown(a \smile b)=x$, we get $x \leqq a \smile b$. We have clearly $a \smile b \in J(a, b)$, and $x \in J(a, b)$ if $x \leqq a$ or $x \leqq b$. On the other hand any element x of $J(a, b)$ is represented by $x=(a \frown x) \smile(b \frown x)$, where $a \frown x \in(a], b \frown x \in(b]$. If we take any two elements x, y from $J(a, b)$, then $x \smile y$ belongs to $J(a, b)$. Indeed we have $x \smile y=(a \smile b) \frown(x \smile y) \geqq(a \frown(x \smile y)) \smile(b \frown(x \smile y))$
$\geqq(a \frown x) \smile(a \frown y) \smile(b \frown x) \smile(b \frown y)=x \smile y$.
Similarly any element x of $C(J(a, b))$ is equal to or greater than $a \frown b$. Therefore we obtain

Theorem 1. In a lattice L we have

$$
\begin{equation*}
(a] \smile(b]=J(a, b) \subset(a \smile b] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
[a) \frown[b)=C(J(a, b)) \subset[a \frown b) \tag{2}
\end{equation*}
$$

where $(x]=\{z \mid z \leqq x\}, A \cup B=\{x \smile y ; x \in A, y \in B\}$ if $A, B \subset L$, etc.
Lemma 1. axb implies $x \frown(a \smile b)=x=x \smile(a \frown b)$.
Proof. By $a x b$, we get $x \geqq x \frown(a \smile b) \geqq(x \frown a) \smile(x \frown b)=x, x \leqq x \smile$ $(a \frown b) \leqq(x \smile a) \frown(x \smile b)=x$.
Lemma 1 shows that (G) implies (G^{*}), ($G^{* *}$) in any lattice.
Lemma 2. $a x b$ implies $a \frown x \geqq a \frown b, a \smile b \geqq a \smile x$.
Proof. From Lemma 1, we have $a \frown b \leqq x \leqq a \smile b$. Therefore $a \frown x \geqq a \frown b, a \smile b \geqq a \smile x$.

Lemma 3. $a x_{i} b(i=1,2), a x_{1} x_{2}$ imply $x_{1} x_{2} b$.
Proof. By $a x_{1} x_{2}, a x_{2} b$ we have $x_{2} \geqq\left(x_{1} \frown x_{2}\right) \smile\left(x_{2} \frown b\right) \geqq\left(a \frown x_{2}\right) \smile$ $\left(x_{2} \frown b\right)=x_{2}$. On the other hand, $x_{2} \leqq x_{1} \smile x_{2} \leqq a \smile x_{2}$ by Lemma 2 , and hence we have $x_{2} \leqq\left(x_{1} \smile x_{2}\right) \frown\left(x_{2} \smile b\right) \leqq\left(a \smile x_{2}\right) \frown\left(x_{2} \smile b\right)=x_{2}$ by $a x_{2} b$.

Lemma 4. $a x b, b y c, a b c$ imply $x b y$.
Proof. Since $a \frown b \leqq x \leqq a \smile b, b \frown c \leqq y \leqq b \smile c$ by $a x b$, $b y c$, we have $a \frown b \leqq b \subset x \leqq b, b \frown c \leqq b \frown y \leqq b$, and hence $(a \frown b) \smile(b \frown c) \leqq(b \frown x) \smile(b \frown y) \leqq b$. However $(a \frown b) \cup(b \frown c)=b$ by $a b c$. Thus we obtain $(b \frown x) \cup(b \frown y)=b$. Similarly we have $b \leqq(b \smile x) \frown(b \smile y) \leqq(a \smile b) \frown(b \smile c)$ from $b \leqq b \smile x \leqq a \smile b$, $b \leqq b \smile y \leqq b \smile c$, and hence we have $(b \smile x) \frown(b \smile y)=b$ by $a b c$.

Lemma 5. $a b c, a x b, b y c$ imply $a \frown y \leqq x \frown y$.
Proof. We have $x=x \smile(a \frown b) \geqq x \smile(a \frown y) \geqq x$ from $a x b, a b y$. Hence we have $x \smile(a \frown y)=x$ and then $a \frown y \leqq x \frown y$.

Lemma 6. (G) is equivalent to (G^{*}) in a modular lattice. This proof was observed in L. M. Blumenthal [2].

Lemma 7. If L is modular, then $B(a, b)$ is a sublattice; in case L is not modular, $B(a, b)$ is not necessarily a sublattice.

Proof. If $a x b, a y b$, then we have $x \smile y=(a \frown x) \smile(b \frown x) \smile(a \frown y) \smile$ $(b \frown y) \leqq(a \frown(x \smile y)) \smile(b \frown(x \smile y)) \leqq(a \smile b) \frown(x \smile y)=x \smile y$. Since $x \smile(a \frown b)$ $=x, y \smile(a \frown b)=y$, we have $(x \smile y) \smile(a \frown b)=x \smile y$, and hence $a(x \smile y) b$ by Lemma 6. Similarly we have $a(x \frown y) b$.

If L contains 8 elements $a, b, x, y, z, z_{1}, x_{1}, y_{1}$ such that $a \cup b>x_{1}>a$, $a \smile b>y_{1}>b, a>x>a \frown b, b>y>a \frown b, x_{1} \smile y_{1}=a \smile b, x_{1} \frown y_{1}=z_{1}>x \smile y=z$, $x \frown y=a \frown b$ (L is certainly non-modular in this case), then we have $a x b, a y b$ but not $a(x \smile y) b$.

Lemma 8. In case L is modular, $a b c, a x b$, byc imply $a x c$, ayc.
Proof. By $a b c, a x b$ we have $x=x \smile(a \frown b) \geqq x \smile(a \frown c) \geqq x$, and hence $x=x \smile(a \frown c)$. Since $a \frown b \leqq b \frown x, c \frown x \leqq b \frown x$ by $a x b, x b c$, we have (1) $(a \frown b) \smile(c \frown x) \leqq b \frown x$. Since L is modular, we have $(x \frown c) \smile(a \frown b)$
$=x \frown(c \smile(a \frown b))$ from $a \frown b \leqq x$, and then $c \smile(a \frown b) \geqq(b \frown c) \smile(a \frown b)=b$ by $a b c$, and hence we have (2) $(a \frown b) \smile(c \frown x) \geqq b \frown x$. From (1), (2) we have $(a \frown b) \cup(c \frown x)=b \frown x$. Thus we have $x=(a \frown x) \smile(b \frown x)=$ $(a \frown x) \smile(a \frown b) \smile(c \frown x)=(a \frown x) \smile(c \frown x)$.

Accordingly we have $(a \frown x) \smile(c \frown x)=x=x \smile(a \frown c)$, that is $a x c$ by Lemma 6. We have ayc similarly.

Lemma 9. In case L is modular, $a b c, a x b, b y c$ imply $x y c, a x y$.
Proof. From $x b c$, byc we have $y \leqq y \smile(x \frown c) \leqq y \smile(b \frown c)=y$. By $a y c$, Lemma 5, $x b y$ and $b y c$, we have $y=(a \frown y) \smile(y \frown c) \leqq(x \frown y) \cup(y \frown c)$ $\leqq(b \frown y) \smile(y \frown c)=y$. Hence we have $y=y \smile(x \frown c)=(x \frown y) \smile(y \frown c)$. Similarly we have axy.

Remark. In case L is non-modular, Lemmas 8 and 9 are not necessarily true. For, if L contains 6 elements $a, b, c, a \frown c, x, y$ such that $b>x>a>a \frown c, b>y>c>a \frown c, x \smile y=a \smile c=b, x \frown y=a \frown c$, when L is certainly non-modular, then we have $a b c, a x b, b y c$ but we have not $a x c, a y c, a x y$ and $x y c$.

Theorem 2. If $a b c, a x b, b y c$, then we have
(1) $x b y$ in any lattice,
(2) axc, ayc, xyc, axy in a modular lattice.

Corollary 2.1. In a modular lattice $a x_{i} b(i=1,2), b y c, a x_{1} x_{2} a b c$ imply $x_{1} x_{2} y$.

Proof. Since $a x_{1} y, a x_{2} y$ by Lemma 9 and we have $x_{1} x_{2} b$ by Lemma 3 , thus we have $x_{1} b y, x_{2} b y$ by Lemma 4 . We have further $x_{2} \leqq x_{2} \cup$ $\left(x_{1} \frown y\right) \leqq x_{2} \smile\left(x_{1} \frown b\right)=x_{2}$ by $x_{1} b y, x_{1} x_{2} b, x_{2}=\left(a \frown x_{2}\right) \smile\left(x_{2} \frown y\right) \leqq\left(x_{1} \frown x_{2}\right) \smile$ $\left(x_{2} \frown y\right)$ by $a x_{2} y, a x_{1} x_{2}, \leqq\left(x_{1} \frown x_{2}\right) \smile\left(x_{2} \frown b\right)=x_{2}$ by $x_{2} b y, x_{1} x_{2} b$. Hence we obtain $x_{1} x_{2} y$.

Corollary 2.2. In a modular lattice L, suppose that $a x_{i} b(i=1,2)$, $b y c, a b c, a x_{1} x_{2}$; then we have

$$
\left(x_{1} \smile x_{2}\right) \frown y=\left(x_{1} \frown y\right) \smile\left(x_{2} \frown y\right) .
$$

Proof. We have $x_{1} x_{2} y$ from Corollary 2.1, hence we have ($x_{1} \frown x_{2}$) $\checkmark\left(x_{2} \frown y\right)=x_{2} \frown\left(x_{1} \smile y\right)$. Since L is modular, we have the following equivalent equation $\left(x_{1} \smile x_{2}\right) \frown y=\left(x_{1} \frown y\right) \smile\left(x_{2} \frown y\right)$.

Theorem 3. In order that L be a distributive lattice it is necessary and sufficient that the condition (A) below hold for any elements a, b of L.
(A) $x \in B(a, b)$ if and only if $a \frown b \leqq x \leqq a \smile b$.

Proof. It is clear that if L is distributive then (A) holds for any elements a, b of L. Suppose that L is not distributive. Then there exist five elements a, b, c, d, e such that either
(α) $d=a \frown b=a \frown c=b \frown c, e=a \smile b=a \smile c=b \smile c$
or
(β) $d=a \frown b=a \frown c, e=a \smile b=a \smile c, d<b<c<e$.*)
*) Cf. G. Birkhoff: Lattice Theory, Theorem 2, 134 (1948).

In each case we have $d=a \frown b, e=a \cup b, d<c<e$. However we have $c \notin B(a, b)$; because in case $(\alpha)(c \frown a) \smile(c \frown b)=d \smile d=d \neq c$, and in case $(\beta)(c \frown \alpha) \cup(c \frown b)=a \smile d=a \neq c$. Thus if L is not distributive, the condition (A) dose not hold for some elements a, b of L. This proves Theorem 3.

In any lattice L
(1) $a x b$, $a y b, x a y$ and $x b y$ imply $x \smile y=a \smile b, x \frown y=a \frown b$. For, we have $x \smile y \leqq a \smile b$ from $x \leqq a \smile b, y \leqq a \smile b$, and $a \smile b \leqq x \smile y$ similarly, and hence $a \smile b=x \smile y$. Similarlies $x \frown y=a \frown b$.
(2) $B(a, b)=B(c, d)$ implies $a \smile b=c \smile d, a \frown b=c \frown d$. For, it is evident from (1).

If L is distributive, then Theorem 3 shows that $a \smile b=c \smile d$, $a \frown b=c \frown d$ imply $B(a, b)=B(c, d)$.

Theorem 4. For any elements a, b, c, d of L
(1) $B(a, b)=B(c, d)$ implies $a \smile b=c \smile d, a \frown b=c \frown d$ in any lattice L.
(2) $a \smile b=c \smile d, a \frown b=c \frown d$ imply $B(a, b)=B(c, d)$, if and only if L is a distributive lattice.

Proof. It is sufficient to prove that if L is not distributive there exist four elements a, b, x, y such that $a \smile b=x \smile y, a \frown b=x \frown y$, but $B(a, b) \neq B(x, y)$. As is shown in the proof of Theorem 3 there exist five elements a, b, c, d, e such that either (α) or (β) holds. If we put $x=a, y=c$, then we have $d=a \frown b=x \frown y, e=a \smile b=x \smile y$, but $c \notin B(a, b)$, $c \in B(x, y)=B(a, c)$.

Corollary 4.1. In any lattice, suppose that $B(a, b)=B\left(x_{1}, x_{2}\right)$, $a x_{i} b(i=1,2), a x_{1} x_{2}$. Then we have $x_{1}=a, x_{2}=b$.

Proof. $\quad x_{1}=\left(a \smile x_{1}\right) \frown\left(x_{1} \smile x_{2}\right)=\left(a \smile x_{1}\right) \frown(a \smile b)=a \smile x_{1} \quad$ by $a x_{1} x_{2}$, Theorem 4, and hence $x_{1} \geqq a$. On the other hand, $x_{1}=\left(a \frown x_{1}\right) \smile\left(x_{1} \frown x_{2}\right)$ $=\left(a \frown x_{1}\right) \smile(a \frown b)=a \frown x_{1}$ by $a x_{1} x_{2}$, Theorem 4, and hence $x_{1} \leqq a$. Accordingly we have $x_{1}=a$. Since $x_{1} x_{2} b$ from $a x_{2} b$, and hence we have $x_{2}=b$ similarly.

Corollary 4.2. Let L be a complemented distributive lattice with $I, 0$. If we take a, b of L such that $a \smile b=I, a \frown b=0$, then we have $B(a, b)=B(I, 0)=L$.

Proof is evident from Theorem 4.
Now we consider the structure of $B(a, b)$ in case there is a maximal chain between a and $a \frown b$. Suppose that a_{2} covers $a_{1}=a_{2} \frown b$, and $a_{2} x b$, then we get $a_{2} \geqq a_{2} \frown x \geqq a_{1}$ by Lemma 2 , hence we have either $a_{2}=a_{2} \frown x$ or $a_{2} \frown x=a_{1}$ from $a_{2} \succ a_{1}$. In the first case we have $a_{2} \smile b \geqq x \geqq a_{2}$. In the second case $a_{1} \smile(x \frown b)=x$ from $\left(a_{2} \frown x\right) \smile(x \frown b)=x$, hence $x \frown b=x$ since $x, b \geqq a_{1}$.

Define $C_{a_{i}}=\left\{x \mid a_{i} \leqq x \leqq a_{i} \smile b\right\}$; then we have $B\left(a_{2}, b\right)=\sum_{i=1}^{2} C_{a_{i}}$. In
the same way, if there is a maximal chain between a and $a \frown b$ such that $a=a_{n} \succ a_{n-1} \succ \cdots \succ a_{1}=a \frown b$, then we obtain $B(a, b)=\sum_{i=1}^{n} C_{a}$.

Theorem 5. If a lattice is generated by the two maximal chains $\left\{a_{n}\right\},\left\{b_{m}\right\}$ such that

$$
\begin{aligned}
& a=a_{n} \succ a_{n-1} \succ \cdots \succ a_{1}=a \frown b, \\
& b=b_{m} \succ b_{m-1} \succ \cdots \succ b_{1}=a \frown b,
\end{aligned}
$$

then $B(a, b)$ consists of $m n$ lattice points.

References

[1] V. Glivenko: Géomètrie des systèmes de choses normées, Amer. J. Math., 58 (1936).
[2] L. M. Blumenthal and D. O. Ellis: Note on lattices, Duke Math. J., 16 (1949).
[3] Yataro Matsushima: On lattice characterization of metric betweeness, Science Reports of Gumma Univ., 2 (1952).
[4] L. M. Kelley: The geometry of normed lattice, Duke Math. J., 19 (1952).
Bjarni Jónsson: Distributive sublattices of a modular lattice, Proc. Amer. Math. Soc., 6 (1955).

