126. On Decomposition Spaces of Locally Compact Spaces

By Kiiti Morita

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

1. Introduction. As is well known, any decomposition space¹⁾ of a compact Hausdorff space is normal if it is Hausdorff. The following theorem is a generalization of this fact:²⁾

Theorem 1. Let a Hausdorff space Y be a decomposition space of a Hausdorff space X. If X is locally compact and has the Lindelöf property, then Y is paracompact and normal.

Theorem 1 fails to be true if we replace the condition "has the Lindelöf property" by "is paracompact". This is seen from Theorem 2 below; further it will be shown in 5 below that a Hausdorff space which is obtained as a decomposition space of a locally compact, paracompact, Hausdorff space is not always regular.

Theorem 2. A Hausdorff space X is obtained as the image of a locally compact, paracompact, Hausdorff space under an open continuous mapping if and only if X is locally compact.

In [1, p. 70] P. Alexandroff and H. Hopf have stated that the existence of a regular, non-normal, Hausdorff space which is a decomposition space of a normal Hausdorff space remains unknown to them. Our Theorem 2 assures the existence of such a decomposition space³⁰ and settles this question, since there exists a non-normal, locally compact Hausdorff space. However, the following theorem will give a stronger result.

Theorem 3. A Hausdorff space X is obtained as the image of a locally compact metric space under an open continuous mapping if and only if X is locally compact and locally metrizable.

In the Euclidean plane, let E be the union of the line x=0 and the points $a_{nk} = \left(\frac{1}{n}, \frac{k}{n^2}\right)$, $n=1,2,\cdots$; $k=0, \pm 1, \pm 2,\cdots$. If the sets $T_n(y)$, $n=1,2,\cdots$; $-\infty < y < \infty$ and one-point sets $\{a_{nk}\}$, $n=1,2,\cdots$;

^{1) &}quot;Decomposition space" = "Zerlegungsraum" in the sense of [1, p. 63].

²⁾ There exists a non-regular Hausdorff space which is the image, under an open continuous mapping, of a metric space which is a countable sum of compact sets; cf. [1, p. 70, Beispiel 2], where in line 15 from the bottom " $m=2,3,\cdots$ " should be replaced by " $m=n, n+1,\cdots$ ".

³⁾ If g is an open (or closed) continuous mapping of a T_1 -space Z onto a T_1 -space X, then X is homeomorphic to a decomposition space of Z associated with the decomposition $\{g^{-1}(x) \mid x \in X\}$ (cf. [1, p. 65] and [8]).

No. 8]

 $k=0,\pm 1,\pm 2,\cdots$ are chosen as a basis of open sets where $T_n(y) = \left\{ (u,v) \mid u \leq \frac{1}{n}, \mid v-y \mid \leq u \right\} \cap E$, then we have a space E described in [2, p. 116, ex. 4] and [3]. E is a non-normal, locally compact, locally metrizable, Hausdorff space. Hence it is seen from Theorem 3 that there exists a non-normal, locally compact, Hausdorff space which is the image of a locally compact metric space under an open continuous mapping.

As is well known, the space of all ordinals less than the first uncountable ordinal ω_1 with the order topology is a non-paracompact, completely normal, locally compact, locally metrizable, Hausdorff space. Therefore we see by Theorem 3 that there exists a nonparacompact, locally compact, normal Hausdorff space which is obtained as the image of a locally compact metric space under an open continuous mapping.

On the other hand, a paracompact Hausdorff space which is obtained as the image of a locally compact metric space under an open continuous mapping is necessarily metrizable.⁴⁾

2. The classes \mathfrak{S} and \mathfrak{S}' . A Hausdorff space X will be said to belong to the class \mathfrak{S} (resp. \mathfrak{S}') if there exists a closed covering (resp. a countable closed covering) \mathfrak{M} of X such that every set of \mathfrak{M} is compact and a subset K of X is closed if the intersection $K \cap M$ is closed for every set M of \mathfrak{M} .

Lemma 1. Any locally compact Hausdorff space belongs to the class \mathfrak{S} .

Proof. Let X be a locally compact Hausdorff space and $\{C_a\}$ a family of compact sets of X such that $\{\operatorname{Int} C_a\}$ is a basis for open sets of X. Then $\{C_a\}$ is clearly a closed covering of X. If K is a subset of X such that $K \frown C_a$ is closed for each α , then K is easily shown to be closed. Hence X belongs to the class \mathfrak{S} .

Lemma 2. A locally compact Hausdorff space X with the Lindelöf property belongs to the class \mathfrak{S}' .

Proof. By [4, Theorem 10] X is paracompact and normal. Hence there exists a locally finite closed covering $\{A_i\}$ of X which consists of a countable number of compact sets. If $K \cap A_i$ is closed for each *i*, then $K = \bigcup_i (K \cap A_i)$ is closed since $\{A_i\}$ is locally finite. Hence X belongs to the class \mathfrak{S}' .

Lemma 3. Let a Hausdorff space Y be a decomposition space of a Hausdorff space X. If X belongs to the class \mathfrak{S} (resp. \mathfrak{S}'), then Y belongs also to the class \mathfrak{S} (resp. \mathfrak{S}').

⁴⁾ Among the images of a non-compact, locally compact, metric space under closed continuous mappings there exists a non-metrizable, paracompact, Hausdorff space (cf. [7]).

K. MORITA

Proof. By assumption there exists a closed covering (resp. a countable closed covering) \mathfrak{M} of X such that every set of \mathfrak{M} is compact and a subset K of X is closed if $K \cap M$ is closed for each set M of \mathfrak{M} . Let f be the natural mapping of X onto Y, and put $\mathfrak{N} = \{N \mid N = f(M), M \in \mathfrak{M}\}$. Then each set N of \mathfrak{N} is compact. Since Y is Hausdorff, \mathfrak{N} is a closed covering (resp. a countable closed covering) of Y. Let F be a subset of Y such that $F \cap N$ is closed for each set N of \mathfrak{N} . Since $N = f(M), M \in \mathfrak{M}$ and $f^{-1}(F \cap N) = f^{-1}(F) \cap f^{-1}(N)$, we have $f^{-1}(F) \cap M = f^{-1}(F \cap N) \cap M$. Hence $f^{-1}(F) \cap M$ is closed for each set M of \mathfrak{M} . Therefore $f^{-1}(F)$ is closed. Since Y is a decomposition space of X, F is a closed set of Y. This shows that Y belongs to the class \mathfrak{S} (resp. \mathfrak{S}').

Lemma 4. A Hausdorff space X belonging to the class \mathfrak{S} (resp. \mathfrak{S}') is homeomorphic to a decomposition space of a locally compact, paracompact, Hausdorff space (resp. a locally compact Hausdorff space with the Lindelöf property).

Proof. By assumption there exists a closed covering (resp. a countable closed covering) $\{A_{\alpha} \mid \alpha \in \Omega\}$ of X such that each A_{α} is compact and a subset K is closed if $K \cap A_{\alpha}$ is closed for each α . Let Z be a locally compact Hausdorff space with the following properties: (1) Z is a union of compact sets C_{α} , $\alpha \in \Omega$;

(2) each C_{α} is open in Z and $C_{\alpha} \cap C_{\beta} = 0$ for $\alpha \neq \beta$;

(3) for each α there exists a homeomorphism φ_{α} of C_{α} onto A_{α} . The existence of such a space Z is clear. Z is paracompact (resp. has the Lindelöf property).

We define a mapping g of Z onto X by $g(z) = \varphi_{\alpha}(z)$ for $z \in C_{\alpha}$. Then g is clearly a continuous mapping of Z onto X. Let K be a subset of X such that $g^{-1}(K)$ is closed. Then, for each α , $g^{-1}(K) \cap C_{\alpha}$ is compact and hence $g(g^{-1}(K) \cap C_{\alpha})$ is compact. Since $g(g^{-1}(K) \cap C_{\alpha})$ $= K \cap A_x$, $K \cap A_x$ is closed in X for each α . Therefore K is closed. This shows that X is homeomorphic to a decomposition space of Zassociated with the decomposition $\{g^{-1}(x) \mid x \in X\}$.

From these lemmas we obtain immediately

Theorem 4. The class of all Hausdorff spaces which are obtained as decomposition spaces of locally compact, paracompact, Hausdorff spaces is identical with the class \mathfrak{S} .

Theorem 5. The class of all Hausdorff spaces which are obtained as decomposition spaces of locally compact Hausdorff spaces with the Lindelöf property is identical with the class \mathfrak{S}' .

3. Proof of Theorem 1. Theorem 1 is a direct consequence of Lemma 5 below in view of Theorem 5.

Lemma 5. A Hausdorff space belonging to the class \mathfrak{S}' is paracompact and normal. No. 8] On Decomposition Spaces of Locally Compact Spaces

Proof. Since a compact Hausdorff space is paracompact and normal, Lemma 5 follows immediately from a result obtained in a previous paper [6, Corollary to Theorem 1].⁵⁾

4. Proofs of Theorems 2 and 3. Let X be locally compact (resp. locally compact and locally metrizable). For each point p of X there exists an open neighbourhood U_0 such that \overline{U}_0 is compact. Then there exists a real-valued continuous function f(x) such that f(p)=1 and f(x)=0 for $x \in X-U_0$. If we put $U=\{x \mid f(x)>0\}$, U is a countable sum of compact sets and hence U is paracompact by [4, Theorem 10]. Thus there exists an open covering $\{V_{\alpha} \mid \alpha \in \Omega\}$ of X such that each V_{α} is paracompact (resp. metrizable). Let Z be a locally compact Hausdorff space such that

(1)' Z is a union of open sets W_{α} , $\alpha \in \Omega$;

(2)' $W_{\alpha} \cap W_{\beta} = 0$ for $\alpha \neq \beta$;

(3)' for each α there exists a homeomorphism φ_a of W_a onto V_a . The existence of such a space Z is evident. Z is paracompact (resp. metrizable).

We define a mapping g of Z onto X by putting $g(z) = \varphi_a(z)$ if $z \in W_a$. Then g is clearly a continuous mapping of Z onto X. Let H be any open set of Z. Then $H \cap W_a$ is an open set of W_a for each α . Hence $g(H \cap W_a) = \varphi_a(H \cap W_a)$ is an open sets of V_a and consequently an open set of X for each α . Since $g(H) = \smile g(H \cap W_a)$, g(H) is itself an open set of X. This shows that g is an open mapping.

Thus the "if" part of Theorem 2 and that of Theorem 3 are proved. The "only if" part of Theorem 2 is obvious.

To prove the "only if" part of Theorem 3, suppose that X is the image of a locally compact metric space Z under an open continuous mapping g. Then X is locally compact. For each point x of X we take a point z from $g^{-1}(x)$. Then z has an open neighbourhood W which is a countable sum of compact sets. The subspace W is a locally compact metric space with a countable basis. Hence g(W) is locally compact and has a countable basis, and consequently g(W) is metrizable. On the other hand, g(W) is an open neighbourhood of x. Thus X is locally metrizable. This proves the "only if" part of Theorem 3.

⁵⁾ In April, 1955, E. Michael communicated to me that he had proved [6, Theorem 1] independently. His proof seems to proceed along the same line as my proof of [5, Theorem 2] with Tietze's extension theorem replaced by his extension theorem in his paper: Selection theorems for continuous functions, Proc. Inter. Math. Cong. Amsterdam (1954). A few months later T. Kando found also the same proof as Michael's independently.

Added in proof: Cf. E. Michael: Continuous selections, I, Ann. Math., 63, 361-382 (1956).

K. MORITA

5. A remark. Let X be a locally compact Hausdorff space which is not normal. Then there exist two closed sets A and B such that there exist no open sets U and V with $A \subset U$, $B \subset V$, $U \subset V=0$. If we construct a decomposition space Y by contracting A to a point, then Y is a Hausdorff space which is not regular. Thus a Hausdorff space which is obtained as a decomposition space of a locally compact, paracompact, Hausdorff space is not always regular.

On the other hand, a T_1 -space which is the image of a locally compact, paracompact Hausdorff space under a closed continuous mapping is always paracompact (cf. [7]).

References

- [1] P. Alexandroff und H. Hopf: Topologie I, Berlin (1935).
- [2] N. Bourbaki: Integration, Paris (1952).
- [3] J. Dieudonné: Sur un espace localement compact non metrizable, Anais da Academia Brasileira de Ciencias, 19, 67-69 (1947).
- [4] K. Morita: Star-finite coverings and the star-finite property, Math. Japonicae, 1, 60-68 (1948).
- [5] K. Morita: On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29, 537-543 (1953).
- [6] K. Morita: On spaces having the weak topology with respect to closed coverings. II, Proc. Japan Acad., 30, 711-717 (1954).
- [7] K. Morita: On closed mappings, Proc. Japan Acad., 32, 537 (1956).
- [8] G. T. Whyburn: Open and closed mappings, Duke Math. J., 17, 69-74 (1950).