166. On "Amount of Information"

By Kōmei Suzuki
(Comm. by K. Kunugi, m.J.A., Dec. 13, 1956)
We have pursued the mathematical characters of the "amount of information" propounded by Norbert Wiener ${ }^{1)}$ and Claude E. Shannon. ${ }^{3)}$ And considering it, we were always to specify at least one partition of the probability space. ${ }^{2)}$

Thus we have designed to discuss it without discriminating the types of probability distributions.
§ 1. $\log _{2} \frac{1}{P}$ and $P \log _{2} \frac{1}{P}$
As the "state" (A) considered about some object is defined by the possible K cases, by the K attributes or more generally by the number K, the capability of the "source" for causing the state (A) to occur is measured by $\log _{2} K$.

Mathematically this corresponds with the fact that the subsets of the finite set consisting of M elements are 2^{M} in all, while K and $\log _{2} K$ correspond to 2^{M} and M respectively.

Further, if the capability is expressed statistically, the probability P in which the state (A) occurs is used for K or 2^{M} and it will be measured by $\log _{2} \frac{1}{P}$ avoiding negative.

This quantity $\log _{2} \frac{1}{P}$ will be called the amount of information for the source due to the state (A) that happens.

Hence putting conveniently $0 \log \frac{1}{0}=0$, we have easily the following proposition.
(1.1) $P \log \frac{1}{P}, P \geq 0$, is concave, and attains its maximum at $P=\frac{1}{e}$, thus it is an increasing function in $0 \leq P \leq \frac{1}{e}$, (e is the base of the natural logarithm); and for $\Delta P \geq 0$ and $1 \geq P_{k}, P_{k}+(-1)^{k+1} \Delta P \geq 0$, $k=1,2$,

$$
\left(P_{1}+\Delta P\right) \log \frac{1}{P_{1}+\Delta P}-\left(P_{2}-\Delta P\right) \log \frac{1}{P_{2}-\Delta P} \equiv P_{1} \log \frac{1}{P_{1}}+P_{2} \log \frac{1}{P_{2}}
$$

accordingly as $\left|\left(P_{1}+\Delta P\right)-\left(P_{2}-\Delta P\right)\right| \geqslant\left|P_{1}-P_{2}\right|$.
Further, as a great number of states are sometimes supposed to exist in observing some object, the average amount of information for the capability of the source due to the sequence of states such as $\left\{A_{i} \mid i=0,1,2, \cdots\right\}$, where $\left(A_{i}\right)$ is defined by the probability P_{i},
$P_{i} \geq 0, \sum_{i=0}^{\infty} P_{i}=1$, may also be taken into consideration and represented as, $H=\sum_{i=0}^{\infty} P_{i} \log \frac{1}{P_{i}}$. And this quantity H is usually called the amount of information for the source due to the sequence of states $\left\{A_{i} \mid i=0\right.$, $1,2, \cdots\}$.
§2. The partition of the probability space
By $(R, \mathfrak{X}, \lambda)$ we denote, as usual, the probability space (or the probability distribution), i.e. R is a non-empty set, \mathfrak{X} an additive class of subsets in R and λ is non-negative measure defined for the set of \mathfrak{X}, and $\lambda(R)=1$.

A partition Λ of $(R, \mathfrak{x}, \lambda)$ shall be defined as follows:

$$
\Lambda: R=\bigcup_{i=0}^{\infty} A_{i} ; \quad A_{i} \in \mathfrak{X}, \quad A_{i} \cap A_{j}=0, i \neq j
$$

For a given partition Λ, we put $\lambda\left(A_{i}\right)=P_{i}$ and $H=H(\lambda ; \Lambda)$ $=\sum_{i=0}^{\infty} P_{i} \log \frac{1}{P_{i}}$.

Thus we may consider the above as an amount of information for a partition Λ.

When a partition Λ_{1} is given as follows:

$$
\begin{gathered}
\Lambda_{1}: R=\bigcup_{j=0}^{\infty} B_{j} ; B_{j} \in \mathfrak{X}, \quad B_{j} \cap B_{j^{\prime}}=0, j \neq j^{\prime}, \\
B_{j}=\bigcup_{\nu} A_{i \nu}, \nu=1,2, \cdots, k_{j}, A_{i v} \in\left\{A_{i} \mid i=0,1, \cdots\right\},
\end{gathered}
$$

we have

$$
P_{j}=\lambda\left(B_{j}\right)=\lambda\left(\bigcup_{\nu} A_{i \nu}\right)=\sum_{\nu} P_{i \nu}
$$

and

$$
P_{j} \log \frac{1}{P_{j}} \leq \sum_{\nu=1}^{k_{j}} P_{i_{\nu}} \log 1 / P_{i_{\nu}}
$$

thus

$$
H\left(\lambda ; \Lambda_{1}\right)=\sum_{j=0}^{\infty} P_{j} \log \frac{1}{P_{j}} \leq \sum_{j=0}^{\infty} \sum_{\nu=1}^{k_{j}} P_{i \nu} \log \frac{1}{P_{i \nu}}=H(\lambda ; \Lambda) .
$$

This gives the following proposition.
(2.1) The unification of some components of a partition causes the decrease of the amount of information.
§ 3. Convergence of $H=\sum_{i=0}^{\infty} P_{i} \log \frac{1}{P_{i}}$
(3.1) If $\lim _{i \rightarrow \infty} \frac{P_{i+1}}{P_{i}}<1$, then $H=\sum_{i=0}^{\infty} P_{i} \log \frac{1}{P_{i}}$ is convergent.

From $\lim _{i \rightarrow \infty} \frac{P_{i+1}}{P_{i}}<1$, we could select a positive number ρ_{0} and a sufficiently large integer n_{0} such that $0<\frac{P_{i+1}}{P_{i}} \leq f_{0}<1$ for $i \geq n_{c}$, and then, referring to (1.1), we have

$$
\begin{aligned}
0<\sum_{i=m}^{n} P_{i} \log \frac{1}{P_{i}} & \leq \sum_{\nu=m-n_{0}}^{n-m_{0}} \rho_{0}^{\nu} P_{n_{0}} \log \left(1 / P_{n_{0}} \rho_{0}^{\nu}\right) \\
& \leq P_{n_{0}} \sum_{\nu=m-n_{0}}^{n-n_{0}} \rho_{0}^{\nu}\left(\log \frac{1}{P_{n_{0}}}+\nu \log \frac{1}{\rho_{0}}\right)
\end{aligned}
$$

for $0 \leq P_{i} \leq \frac{1}{e}$ and for any n, m such that $n>m \geq n_{0}$.
(3.2) If $\lim _{i \rightarrow \infty} \frac{P_{i+1}}{P_{i}}=1$, then $H=\sum_{i=0}^{\infty} P_{i} \log \frac{1}{P_{i}}$ converges or diverges concurrently with the series $\sum_{\nu=0}^{\infty} \nu \eta_{\nu}$,
where

$$
\eta_{\nu}=\sum_{e^{-1}\left(1-e^{-1}\right), i_{\nu}>p_{i} \geq e^{-1}\left(1-e^{-1}\right)^{i} \nu^{+1}} .
$$

Let m_{ν} be the number of terms of η_{ν}, from the definition of η_{ν},

$$
e^{-1} \sum_{\nu=0}^{\infty} m_{\nu} r^{i_{\nu}} \geq \sum_{\nu=0}^{\infty} \eta_{\nu} \geq e^{-1} \sum_{\nu=0}^{\infty} m_{\nu} r^{i_{\nu}+1}, r=1-e^{-1},
$$

then the series

$$
e^{-1} \sum_{\nu} m_{\nu} r^{i_{\nu}}, e^{-1} \sum_{\nu} m_{\nu} r^{i \nu+1}
$$

are convergent since $\sum_{\nu} \eta_{\nu}$ is convergent. And for a sufficiently large number $\nu_{0}, i_{\nu+1}=i_{\nu}+1, \nu \geq \nu_{0}$.

Thus we shall obtain two integers $\nu_{1}, \nu_{2}\left(\geq \nu_{0}\right)$ such that

$$
\begin{aligned}
& \left(1-e^{-1}\right) \sum_{\mu=1}^{\infty} \eta_{\nu_{1}+\mu}\left(1+\left(i_{\nu_{1}}+\mu+1\right) \log \frac{e}{e-1}\right) \\
& \quad \leq \sum_{i=N}^{\infty} P_{i} \log \frac{1}{P_{i}} \leq \frac{e}{e-1} \sum_{\mu=1}^{\infty} \eta_{\nu_{2}+\mu}\left(1+\left(i_{\nu_{2}}+\mu\right) \log \frac{e}{e-1}\right)
\end{aligned}
$$

for a sufficiently large integer N. Hence the proposition (3.2) may be proved.
§4. Comparison between two amounts of information
Henceforth we assume that the series

$$
H(\lambda ; \Lambda)=\sum_{i=0}^{\infty} P_{i} \log \frac{1}{P_{i}}
$$

and

$$
H\left(\lambda_{1} ; \Lambda\right)=\sum_{i=0}^{\infty}\left(P_{i}+\Delta P_{i}\right) \log 1 /\left(P_{i}+\Delta P_{i}\right)
$$

are convergent; and that there exist some positive numbers α, k such that

$$
\begin{equation*}
-1+\alpha \leq \frac{\Delta P_{i}}{P_{i}} \leq k, \quad i=0,1,2, \cdots, \quad 0<\alpha<1 \tag{4.1}
\end{equation*}
$$

Thus we see that the series $\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}}$ and $\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}}$ are also absolute convergent. Therefore we have as follows:

$$
\begin{aligned}
\Delta H & =H\left(\lambda_{1} ; \Lambda\right)-H(\lambda ; \Lambda) \\
& =\sum_{i=0}^{\infty}\left(\left(P_{i}+\Delta P_{i}\right) \log \frac{1}{P_{i}+\Delta P_{i}}-P_{i} \log \frac{1}{P_{i}}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}}-\sum_{i=0}^{\infty}\left(P_{i}+\Delta P_{i}\right) \log \frac{P_{i}+\Delta P_{i}}{P_{i}} \tag{4.1.1}\\
& =\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}}+\sum_{i=0}^{\infty} P_{i} \log \frac{P_{i}}{P_{i}+\Delta P_{i}}
\end{align*}
$$

And on the other hand it is always true that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \Delta P_{i}=0, \quad \text { (absolute convergent). } \tag{4.1.2}
\end{equation*}
$$

Thus we get easily
$\sum_{i=0}^{\infty}\left(P_{i}+\Delta P_{i}\right) \log \frac{P_{i}+\Delta P_{i}}{P_{i}}=\sum_{i=0}^{\infty}\left(\frac{\left(\Delta P_{i}\right)^{2}}{P_{i}}-\left(P_{i}+\Delta P_{i}\right) \int_{0}^{\Delta P_{i} / P_{i}}(t /(1+t)) d t\right) \geq 0$

$$
\begin{align*}
& \text { and } \tag{4.1.4}\\
& \sum_{i=0}^{\infty} P_{i} \log \frac{P_{i}}{P_{i}+\Delta P_{i}}=\sum_{i=0}^{\infty} P_{i} \int_{0}^{\Delta P_{i} / P_{i}}(t /(1+t)) d t \geq 0 .
\end{align*}
$$

And finally we get

$$
\begin{equation*}
\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}} \leq \Delta H \leq \sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}} \tag{4.2}
\end{equation*}
$$

From this result the following propositions are clear.

$$
\Delta H \leq 0 \rightarrow \sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}} \leq 0
$$

or

$$
\begin{equation*}
\Delta H \geq 0 \rightarrow \sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}} \geq 0 \tag{4.2.1}
\end{equation*}
$$

and

$$
\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}} \geq 0 \rightarrow \Delta H \geq 0
$$

or

$$
\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}} \leq 0 \rightarrow \Delta H \leq 0 .
$$

§ 5. $\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}}$ and $\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}}$
According to $\Delta P_{i}<0$ or $\Delta P_{i} \geq 0$, we classify the sequence $\left\{\left(P_{i}, \Delta P_{i}\right) \mid\right.$ $i=0,1,2, \cdots\}$ into two groups;

1) group α : $\left\{\left(P_{\alpha_{\mu}},-\Delta P_{\alpha_{\mu}}\right) \mid \Delta P_{\alpha_{\mu}}>0, \mu=1,2, \cdots\right\}$
2) group β : $\left\{\left(P_{\beta \nu},+\Delta P_{\beta_{\nu}}\right) \mid \Delta P_{\beta_{\nu}} \geq 0, \nu=1,2, \cdots\right\}$.

Hence we may consider the mass $\Delta P_{\mu \nu} \geq 0$ for a pair $(\mu, \nu), \mu, \nu=1,2, \cdots$. The masses $\Delta P_{\mu \nu}, \mu, \nu=1,2, \cdots$, are interpreted, for example, as the ones remove from $A_{\alpha_{\mu}}$ to $A_{\beta_{\nu}}$ when by the probability distribution, which is shifting in the passage of time, the types represented as $(R, \mathfrak{X}, \lambda)$ and $\left(R, \mathfrak{X}, \lambda_{1}\right)$ are taken at the time t and t_{1} respectively.

Then it follows that if we put

$$
\Delta P_{\alpha_{\mu}}=\sum_{\nu=1}^{\infty} \Delta P_{\mu \nu} \quad \text { (absolute convergent) }
$$

$\Delta P_{\beta \nu}$ are to be defined as $\Delta P_{\beta_{\nu}}=\sum_{\mu=1}^{\infty} \Delta P_{\mu \nu}$ since $\Delta P_{\mu \nu} \leq \Delta P_{\alpha_{\mu}}$ and $\sum_{\mu=1}^{\infty} \Delta P_{\alpha_{\mu}}$ is absolute convergent.

Thus

$$
\begin{align*}
\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}} & =\sum_{\nu=1}^{\infty}\left(\Delta P_{\beta_{\nu}} \log \frac{1}{P_{\beta_{\nu}}}\right)-\sum_{\mu=1}^{\infty}\left(\Delta P_{\alpha_{\mu}} \log \frac{1}{P_{\alpha_{\mu}}}\right) \\
& =\sum_{\mu, \nu} \Delta P_{\mu \nu}\left(\log \frac{1}{P_{\beta_{\nu}}}-\log \frac{1}{P_{\alpha_{\mu}}}\right) . \tag{5.1}
\end{align*}
$$

If $\Delta P_{\mu \nu}>0$, then

$$
\Delta P_{\mu \nu}\left(\log \frac{1}{P_{\beta_{\nu}}}-\log \frac{1}{P_{\alpha_{\mu}}}\right)\left\{\begin{array}{l}
>0 \leftrightarrow P_{\beta_{\nu}}<P_{\alpha_{\mu}} \tag{5.1.1}\\
=0 \leftrightarrow P_{\beta_{\nu}}=P_{\alpha_{\mu}} \\
<0 \leftrightarrow P_{\beta_{\nu}}>P_{\alpha_{\mu}} .
\end{array}\right.
$$

Similarly

$$
\begin{equation*}
\sum_{i=0}^{\infty} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}}=\sum_{\mu \nu} \Delta P_{\mu \nu}\left(\log \frac{1}{P_{\beta \nu}+\Delta P_{\beta}}-\log \frac{1}{P_{\alpha_{\mu}}-\Delta P_{\alpha_{\mu}}}\right) \tag{5.2}
\end{equation*}
$$

and if $\Delta P_{\mu \nu}>0$, then

$$
\Delta P_{\mu \nu}\left(\log \frac{1}{P_{\beta_{\nu}}+\Delta P_{\beta_{\nu}}}-\log \frac{1}{P_{\alpha_{\mu}}-\Delta P_{\alpha_{\mu}}}\right)\left\{\begin{array}{l}
>0 \leftrightarrow P_{\beta_{\nu}}+\Delta P_{\beta_{\nu}}<P_{\alpha_{\mu}}-\Delta P_{\alpha_{\mu}} \tag{5.2.1}\\
=0 \leftrightarrow P_{\beta_{\nu}}+\Delta P_{\beta_{\nu}}=P_{\alpha_{\mu}}-\Delta P_{\alpha_{\mu}} \\
<0 \leftrightarrow P_{\beta_{\nu}}+\Delta P_{\beta_{\nu}}>P_{\alpha_{\mu}}-\Delta P_{\alpha_{\mu}} .
\end{array}\right.
$$

Therefore if $P_{\beta_{\nu}}>P_{\alpha_{\mu}}$ for all μ, ν, referring to (4.2), we have $\Delta H<0$; and also if $P_{\beta \nu}+\Delta P_{\beta \nu}<P_{\alpha_{\mu}}-\Delta P_{\alpha_{\mu}}$ for all $\mu, \nu, \Delta H>0$.
Thus we may infer that
(5.3) the concentration or the divergence of masses causes to decrease or increase the amount of information respectively.

References

1) Wiener, N.,: Cybernetics (1948).
2) Darrow, C. K.,: Statistical theories of matter radiation and electricity, Phys. Rev. (1929).
3) Shannon, E. C., and Weaver, W.,: The Mathematical Theory of Communication, University of Illinois Press (1949).
